SAGE-analysis Documentation
Release 0.0.1

Jacob Seiler, Manodeep Sinha, Darren Croton

Sep 21, 2023

User Documentation

1 Installation

2 Maintainers

Introduction
SettingupSAGE
Analyzing SAGE Output
Defining Custom Properties

sage_analysis.Model
sage_analysis.sage_hdf5
sage_analysis.sage_binary
sage_analysis.example_cales
sage_analysis.example_plots
sage_analysis.utils

2.1
2.2
23
24
2.5 Analyzing Custom Properties
2.6
2.7 sage_analysis.GalaxyAnalysis
2.8
29
2.10
2.11
2.12
2.13
Python Module Index
Index

Analyzing Custom Data

SAGE-analysis Documentation, Release 0.0.1

This is the documentation for the Semi-Analytic Galaxy Evolution (SAGE) analysis package. This package ingests,
analyses, and plots the data products of the SAGE model, located here. Please refer to the to the SAGE repo for full
documentation regarding how to run the base model.

User Documentation 1

https://github.com/sage-home/sage-model
https://github.com/sage-home/sage-model

SAGE-analysis Documentation, Release 0.0.1

2 User Documentation

CHAPTER 1

Installation

The recommended installing method is through pip:

$ pip install sage-analysis

SAGE-analysis Documentation, Release 0.0.1

4 Chapter 1. Installation

CHAPTER 2

Maintainers

* Jacob Seiler (@jacobseiler)
e User Documentation

* API Reference

2.1 Introduction

The SAGE-analysis package was developed to handle the data products produced by the SAGE model, available here.

2.1.1 Why Did We Create A New Repo?

SAGE is an extremely modular and flexible semi-analytic model. The base model (presented in Croton et al., 2016)
has been adjusted and altered to answer a number of science questions on a variety of topics including galactic HI and
angular momentum properties in DARK SAGE, the Epoch of Reionization in RSAGE, and the star formation history
and galactic dust in DUSTY SAGE _.

Due to the wide array of science that SAGE can cover and the number of models that spawned from its development,
there has been a need to develop a framework to ingest in data from (ideally) any SAGE variant. This repo represents
such an effort. It represents a series of modules intended to provide the easy ingestion and analysis of the base SAGE
data, whilst serving as a template for analysing any other SAGE flavours.

2.1.2 Advantages of the Package
* Easy analysis and plotting of multiple different SAGE models. For example, comparing SAGE models
with/without supernova feedback.

¢ Memory efficient analysis of SAGE output. All calculations are performed using only a single output file at a
time, ensuring no extra memory overhead associated with opening many files.

* Support for the user to implement their own functions to analysis + plotting.

https://github.com/jacobseiler
https://github.com/sage-home/sage-model
https://arxiv.org/abs/1601.04709
https://arxiv.org/abs/1605.00647
https://arxiv.org/abs/1902.01611

SAGE-analysis Documentation, Release 0.0.1

» Template for creating custom data classes to ingest any arbitrary SAGE data output. Useful if you’re looking to
develop using SAGE.

2.2 Setting up SAGE

This package ingests, analyses, and plots the data products produced by SAGE. Hence, the first step is to run the
SAGE model and simulate some galaxies! We defer to the **SAGE** documentation for instructions on how run the
SAGE model.

2.3 Analyzing SAGE Output

The output from SAGE is analyzed using the respective parameter files used to run SAGE itself. Here, we will assume
the parameter file is located in /home /Desktop/sage-model/input/millennium. ini.

On this page, we outline some of the basic features of sage-analysis that can be used to analyze and plot SAGE output.
2.3.1 Basic Analysis

Out of the box, sage-analysis will analyse the latest snapshot (i.e., the lowest redshift) and save the plots in the
. /plots directory.

from sage_analysis.galaxy analysis import GalaxyAnalysis
par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]
galaxy_analysis = GalaxyAnalysis (par_fnames)

galaxy_analysis.analyze_galaxies|()
galaxy_analysis.generate_plots ()

The output path can be changed by adjusting the plot_output_path variable passed to generate_plots ().

If you ran SAGE using sage-binary output, you will need to specify the first_file to_analyze,
last_file to_analyze, and num_sage_output_files for each model. These will need to be specified
for all the following examples. For brevity, we will omit them in the following and assume that SAGE has been run
using sage—hdf5 output (recommended).

from sage_analysis.galaxy analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]
first_files_to_analyze = [0] # The first files that you wish to analyze + plot.
last_files_to_analyze = [0] # The last files that you wish to analyze + plot.
num_sage_output_files = [1] # The number of files that SAGE produced; usually the_

—number of processors it ran on.

galaxy_analysis = GalaxyAnalysis(
par_fnames,
first_files_to_analyze=first_files_to_analyze,
last_files_to_analyze=last_files_to_analyze,
num_sage_output_files=num_sage_output_files
)
galaxy_analysis.analyze_galaxies|()
galaxy_analysis.generate_plots ()

6 Chapter 2. Maintainers

https://sage-model.readthedocs.io/en/latest/introduction.html

SAGE-analysis Documentation, Release 0.0.1

2.3.2 Accessing Galaxy Properties

Galaxy properties can be accessed via the properties attribute of an individual Mode1 class. It can be useful to
generate only the properties and not performing plotting (e.g., if you wish to use the properties for your own purpose).

from sage_analysis.galaxy analysis import GalaxyAnalysis
par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]

galaxy_analysis = GalaxyAnalysis (par_fnames)
galaxy_analysis.analyze_galaxies|()

print (galaxy_analysis.models)

print (galaxy_analysis.models[0] .bins["stellar mass_bins"]) # The stellar mass bins_,
— (1logl0 Msun).
print (galaxy_analysis.models[0] .properties["snapshot_ 63"]["SMF"]) # The number of_

—galaxies in each bin.

Model Mini-Millennium

SAGE File:/home/Desktop/sage-model/input/millennium.ini
SAGE Output Format: sage_hdfb

First file to read: 0

Last file to read: 0

>>> [8. 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9. 9.1 9.2 9.3
9.4 9.5 9.6 9.7 9.8 9.9 10. 10.1 10.2 10.3 10.4 10.5 10.6 10.7
10.8 10.9 11. 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.]

>>> [1148. 1328. 1456. 1698. 1836. 1824. 1778. 1576. 1313. 1091. 955. 830.
791. 734. 656. 662. 659. 593. 550. 552. 496. 483. 475. 425.
401. 291. 293. 248. 229. 190. 124. 71. 47. 18. 3. 0.
0. 0. 0. 0.1

2.3.3 Analyze Only a Subset of Files

For extremely large simulations, it may be prudent to analyze only a subset of files. For example, if SAGE run in
parallel across 32 processors, we may only wish to analyze a quarter of these. This can be achieved by specifying the
first_file to _analyzeand last_file_to_analyze for each model.

from sage_analysis.galaxy_ analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]
first_files_to_analyze = [0]
last_files_to_analyze = [7]

galaxy_analysis = GalaxyAnalysis(
par_fnames,
first_files_to_analyze=first_files_to_analyze,
last_files_to_analyze=last_files_to_analyze,
)
galaxy_analysis.analyze_galaxies()
galaxy_analysis.generate_plots ()

2.3. Analyzing SAGE Output 7

SAGE-analysis Documentation, Release 0.0.1

2.3.4 Turning On and Off Properties

Properties are analyzed and plotted according to the values in plot_toggles. The default values of this dictionary
are set to analyze all basic properties, with the exception of properties tracked over time.

from sage_analaysis.default_analysis_arguments import default_plot_toggles
print (default_plot_toggles)

>>>
'SME': True,
'"BMF': True,
'"GMF': True,
'BTF': True,
'sSFR': True,
'gas_fraction': True,
'metallicity': True,
'"bh_bulge': True,
'quiescent': True,
'bulge_fraction': True,
'baryon_fraction': True,
'reservoirs': True,
'spatial': True,
'SMF_history': False,
'SFRD_history': False,
'SMD_history': False

By adjusting these properties, or specifying a custom set, you can control which properties you want to analyze.

from sage_analaysis.default_analysis_arguments import default_plot_toggles
from sage_analysis.galaxy analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]

Plot only the stellar mass function and black hole-bulge relationship.
galaxy_analysis = GalaxyAnalysis (par_fnames, plot_toggles={"SMF": True, "bh_bulge":
—True})

galaxy_analysis.analyze_galaxies|()

galaxy_analysis.generate_plots ()

Plot all properties EXCEPT the mass-metallicity relationship.
plot_toggles = default_plot_toggles.copy () # Copy to ensure ' ‘default_plot_toggles
—aren't overwritten.

—

plot_toggles|["metallicity"] = False

galaxy_analysis = GalaxyAnalysis (par_fnames, plot_toggles=plot_toggles)
galaxy_analysis.analyze_galaxies()
galaxy_analysis.generate_plots ()

2.3.5 Analyzing Basic Properties Over Redshift

It can also be very useful to investigate how properties evolve over many snapshots. By default, sage-analysis supports
analyzing the stellar mass function, stellar mass density, and star formation rate density over redshift.

Note: Ensure that SAGE has outputs for multiple snapshots. Try setting NumOutputs to —1 and re-running SAGE.

8 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

These extra properties can be set by turning their respective entries in plot_toggles.

from sage_analysis.galaxy analysis import GalaxyAnalysis
par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]

galaxy_analysis = GalaxyAnalysis (

par_fnames, plot_toggles={"SMF_history": True, "SMD_history": True, "SFRD_history
—": True},
)
galaxy_analysis.analyze_galaxies()
galaxy_analysis.generate_plots ()

By default, these extra properties are analyzed and plotted for all available redshifts. You can also specify which
redshifts you want to analyze, with sage-analysis selecting the snapshots that are closest to the desired redshifts
specified. This is especially useful for the stellar mass function where we often want to investigate the evolution at
specific redshifts.

from sage_analysis.galaxy analysis import GalaxyAnalysis
par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]

galaxy_analysis = GalaxyAnalysis(
par_fnames,
plot_toggles={"SMF_history": True},
history_redshifts={"SMF_history": [0.0, 0.5, 1.0, 2.0, 3.0]},
)
galaxy_analysis.analyze_galaxies()
galaxy_analysis.generate_plots ()

To analyse and plot these properties in addition to the other properties (e.g., the baryon fraction, quiescent fraction,
etc), use and update the default_plot_toggles value.

from sage_analysis.default_analysis_arguments import default_plot_toggles

plot_toggles = default_plot_toggles.copy() # Copy to ensure ‘default_plot_toggles
—aren't overwritten.

[

plot_toggles["SMF_history"] = True
plot_toggles["SMD_history"] = True
plot_toggles["SFRD_history"] = True

galaxy_analysis = GalaxyAnalysis (par_fnames, plot_toggles=plot_toggles)
galaxy_analysis.analyze_galaxies|()
galaxy_analysis.generate_plots ()

2.3.6 Changing the Snapshot

By default, sage-analysis will analyze the lowest redshift snapshot for each model. This behaviour can be adjusted to
analyze any arbitrary snapshot.

from sage_analysis.galaxy analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]
snapshots = [[50]]

(continues on next page)

2.3. Analyzing SAGE Output 9

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

galaxy_analysis = GalaxyAnalysis (par_fnames)
galaxy_analysis.analyze_galaxies (snapshots=snapshots)
galaxy_analysis.generate_plots (snapshots=snapshots)

2.3.7 Changing the Redshift

Alternatively, rather than specifying the snapshot for each model, one can specify the redshift. sage-analysis will
analyze the snapshot closest to these redshifts.

from sage_analysis.galaxy analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]
redshifts = [[1.0]]

galaxy_analysis = GalaxyAnalysis (par_fnames)
galaxy_analysis.analyze_galaxies (redshifts=redshifts)
galaxy_analysis.generate_plots (redshifts=redshifts)

Note: The snapshots and redshifts parameters cannot both be specified, only one may be used.

2.3.8 Multiple Models

sage-analysis supports analyzing and plotting of multiple SAGE model outputs. For example, let’s say we want to
compare the stellar mass function for SAGE run with and without supernovae feedback. This model has been run
using a parameter file /home /Desktop/sage-model/input/millennium_no_SN.ini

from sage_analysis.galaxy analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini", "/home/Desktop/sage-
—model/input/millennium_no_SN.ini"]
labels = ["Supernovae feedback on", "Supernovae feedback off"]

galaxy_analysis = GalaxyAnalysis (par_fnames, labels=labels)
galaxy_analysis.analyze_galaxies|()
galaxy_analysis.generate_plots ()

2.3.9 Multiple Simulations

In the above example, we ran SAGE on the same underlying N-body simulation. However, we may wish to analyze
how SAGE performs on different simulations, at the same redshift; e.g., we may wish to compare the stellar mass
function at z = 1 for Millennium and Bolshoi.

from sage_analysis.galaxy_ analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini", "/home/Desktop/sage—
—model/input/bolshoi.ini"]

labels = ["Millennium", "Bolshoi"]

galaxy_analysis = GalaxyAnalysis (par_fnames, labels=labels)

(continues on next page)

10 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

redshifts = [[1.0], [1.0]1] # Specify the redshift for each model; necessary because_,
—~the snapshots are not aligned.

galaxy_analysis.analyze_galaxies (redshifts=redshifts)

galaxy_analysis.generate_plots (redshifts=redshifts)

Or perhaps we wish to see how the stellar mass density evolves for the different simulations. . .

from sage_analysis.galaxy analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini", "/home/Desktop/sage—
—model/input/bolshoi.ini"]

labels = ["Millennium", "Bolshoi"]

plot_toggles = {"SFRD_history": True}

galaxy_analysis = GalaxyAnalysis (par_fnames, plot_toggles=plot_toggles)

galaxy_analysis.analyze_galaxies|()
galaxy_analysis.generate_plots ()

2.3.10 Adding Extra Keywords for Analysis and Plotting

Some properties can be broken down into sub-populations and analyzed separately. For example, the stellar mass
function can be split into red and blue galaxies or the baryon fraction can be split into its constituent reservoirs. To
access these extra functionalities, the calculation_functions and plot_functions dictionaries passed to
the GalaxyAnalysis constructor need to be adjusted.

from sage_analysis.utils import generate_func_dict
from sage_analysis.galaxy_analysis import GalaxyAnalysis

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]
plot_toggles = {"SMF": True, "baryon_fraction": True}

For each toggle, specify the extra keyword arguments and their values.

The calculation and plotting step can each have different keywords.
extra_keywords_calculations = {"SME": {"calc_sub_populations": True}}
extra_keywords_plotting = {

"SME": {"plot_sub_populations": True},

"baryon_fraction": {"plot_sub_populations": True}

Now build a dictionary with these extra arguments.
calculation_functions = generate_func_dict (

plot_toggles, "sage_analysis.example_calcs", "calc_ ", extra_keywords_calculations
)
plot_functions = generate_func_dict (

plot_toggles, "sage_analysis.example_plots", "plot_ ", extra_keywords_plotting

Then construct with these new dictionaries.
galaxy_analysis = GalaxyAnalysis (
par_fnames,
plot_toggles=plot_toggles,
calculation_functions=calculation_functions,

(continues on next page)

2.3. Analyzing SAGE Output 11

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

plot_functions=plot_functions

)

galaxy_analysis.analyze_galaxies|()
galaxy_analysis.generate_plots ()

2.4 Defining Custom Properties

2.4.1 Default Properties

Out of the box, sage-analysis supports the analysis of a number of different properties.

Property Plot Description Property Type
Toggle
Name
Stellar mass | SMF Number of galaxies with a given stellar mass. Binned (on stel-
function lar mass).
Baryonic BMF Number of galaxies with a given stellar plus cold gas mass. Binned (on stel-
mass function lar mass).
Gas mass | GMF Number of galaxies with a given cold gas mass. Binned (on stel-
function lar mass).
Baryonic BTF Maximum velocity of a galaxy as a function of baryonic (stellar | Scatter.
Tully-Fisher plus cold gas) mass.
Specific star | sSFR Specific star formation rate as a function of stellar mass. Scatter.
formation rate
Gas fraction gas_frac Fraction of baryons (stellar plus cold gas) in the form of cold | Scatter.
gas as a function of stellar mass.
Mass metal- | metallic- | Metallicity as a function of stellar mass. Scatter.
licity ity
Black hole | bh_bulge | Mass of galaxy black hole as a function of galaxy bulge mass. Scatter.
bulge
Quiescent quiescent | Fraction of galaxies that are quiescent as a function of stellar | Binned (on stel-
galaxy popu- mass. lar mass).
lation
Bulge fraction | bulge_fractjohraction of stellar mass in the form of bulge/disk as a function | Scatter.
of stellar mass.
Baryon frac- | baryon_fra¢ti®aryon fraction in each reservoir (cold, hot, stellar, ejected, in- | Binned (on
tion tracluster, and black hole) as a function of FoF halo virial mass. | FoF halo virial
mass).
Reservoir reservoirs | Amount of mass in each reservoir (cold, hot, stellar, ejected, in- | Scatter.
mass tracluster, and black hole) as a function of FoF halo virial mass.
Spatial distri- | spatial Spatial distribution of galaxies across the simulation box. Scatter.

bution

There are also a handful of toggles available to analyse properties over a number of redshifts.

12

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

Property Plot Toggle | Description Binning Type
Name

Stellar mass func- | SMF_history | Number of galaxies with a given stellar mass over multi- | Binned (on stel-

tion ple redshifts for each model. lar mass).

Star formation | SFRD_history| Total star formation rate density across entire simulation | Single.

rate density box as a function of redshift.

Stellar mass den- | SMD_history | Total stellar mass density across entire simulation box as | Single.

sity a function of redshift.

2.4.2 Property Types

sage-analysis supports three different property types.

binned

These properties are binned against another variable. For example, the stellar mass function counts the number of
galaxy in stellar mass bins, the baryon fraction measures the fraction of baryons in each reservoir in friends-of-friend

halo virial mass.

A property of this types requires the following fields:

<string denoting the name of the bins>: {

"type": "binned",

"bin_low": <float denoting the lower bound of the bins>,

"bin_high": <float denoting the upper bound of the bins>,

"bin_width": <float denoting the width of each bin>,

"property_names": [<list of strings denoting the name of properties to be_
—initialized>],

}

For example, the stellar mass bins needed for default operation are initialized using:

"stellar_mass_bins": {

"type": "binned",

"bin_low": 8.0,

"bin_high": 12.0,

"bin_width": 0.1,

"property_names": [
"SMF", "red_ SMF", "blue_ SMF", "BMF", "GMF",
"centrals_MF", "satellites_MF", "quiescent_galaxy_counts",
"quiescent_centrals_counts", "quiescent_satellites_counts",
"fraction_bulge_sum", "fraction_bulge_var",
"fraction_disk_sum", "fraction_disk_var", "SMF_history",

1y

The bins are accessed using model.properties["<bin_name>"] (e.g., model.
properties["stellar_mass_bins"]) and the properties themselves as model.
properties["<propety_name>"] (e.g., model .properties ["SMF"] or model.
properties["quiescent_galaxy_counts"]. Each property is initialized as a list of Os.

13

2.4. Defining Custom Properties

SAGE-analysis Documentation, Release 0.0.1

scatter

To get a better picutre of some properties, it is useful to display them as a scatter plot. For example, themetallicity
property shows the stellar mass vs metallicity for a number of randomly selected galaxies.

A property of this types requires the following fields:

<string denoting a unique name>: {

"type": "scatter",

"property_names": [<list of strings denoting the name of properties to be
—initialized>],

}

For example, the default scatter properties are initialized using:

"scatter_properties": {

"type": "scatter",

"property_names": [
"BTF_mass", "BTF_vel", "sSFR_mass", "sSFR_sSFR",
"gas_frac_mass", "gas_frac", "metallicity_mass",
"metallicity", "bh_mass", "bulge_mass", "reservoir_mvir",
"reservoir_stars", "reservoir_cold", "reservoir_hot",
"reservoir_ejected", "reservoir_ICS", "x_pos",
"y_pos", "z_pos"

1,

The properties are accessed as model.properties|["<propety_name>"] (e.g, model.
properties["BTF_mass"] or model.properties["BTF_vel"]. Each property is initialized as an
empty list.

single

Finally, we may wish to summarize a property using a single number over an entire snapshot. For example, the
stellar mass density is the sum of stellar mass divided by the volume for a single snapshot. This is useful for tracking
properties over a number of snapshots as they can then be depicted as a line on a stellar mass density vs redshift plot.

A property of this types requires the following fields:

<string denoting a unique name>: {

"type": "single",

"property_names": [<list of strings denoting the name of properties to be_
—~initialized>],

}

For example, the default single properties are initialized using:

"scatter_properties": {
"type": "single",
"property_names": ["SMD_history", "SFRD_history"],
}
The properties are accessed as model.properties|["<propety_name>"] (e.g, model.

properties["SMD_history"] ormodel.properties["SFRD_history"]. Each property is initialized
with a value of 0. 0.

14 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

2.5 Analyzing Custom Properties

We show here a worked example of defining a custom property, writing a custom function to compute its value as the
galaxies are processed, and then plotting the output. We refer to Defining Custom Properties for further detail on the
available property types that can be defined.

2.5.1 Things To Be Aware Of When Analyzing Custom Properties

SAGE operates by allowing each processor to write to its own file as galaxies are evolved through cosmic time, with
sage-analysis processing the galaxy properties for each of these files individually and separately. Consequently, each
property should MUST have an entry in model.properties|["snapshot_<snapshot_number>] that is
carried across the different files.

For binned properties (see Defining Custom Properties), the entry in model.
properties["snapshot_<snapshot_number>"] is a list that is continuously updated for each file. For ex-
ample, the stellar mass function for snapshot 63 is stored in model .properties["snapshot_63"] ["SMF"].
When the galaxies are processed for file 0, the stellar mass function at snapshot 63 is computed and added to
model .properties["snapshot_63"] ["SME"]. These galaxies are discarded and new ones read in for
file 1, with the stellar mass function at snapshot 63 for these new galaxies computed and added to model.
properties["snapshot_63"] ["SMEF"], and so on.

For scatter properties (see Defining Custom Properties), the entry in model.
properties["snapshot_<snapshot_number>"] is an expanding list. For example, 10 galaxies at
snapshot 63 from file O are appended to model.properties["snapshot_63"] ["BTF_mass"], 10 galaxies
from file 1, 10 galaxies from file 2, etc.

For single properties (see Defining Custom Properties), the entry in model.
properties["snapshot_<snapshot_number>"] is a single number that is adjusted for each file.
For example, the sum of stellar mass divided by the volume at snapshot 63 in file 0 is added to model.
properties["snapshot_63"] ["SMD_history"]. The stellar mass density at snapshot 63 in file 1 is then
added, and so on.

2.5.2 Worked Examples
We show here how to compute the number of particles in the background FoF halo (as a binned property), the mass of

hot gas as a function of cold gas (as a scatter property), and the time of last major merger (as a single property) tracked
over redshift.

Number of Particles

Firstly, we need to tell sage_analysis the properties that we are analyzing and plotting.

plot_toggles = {"halo_parts": True}

Now, lets define the properties that will be used to store all of our results. As outlined in Defining Custom Properties,
each property type is defined in a slightly different manner.

galaxy_properties_to_analyze = {
"number_particles_bins": {
"type": "binned",
"bin_low": O,
"bin_high": 5,

(continues on next page)

2.5. Analyzing Custom Properties 15

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

"bin_width": 0.1,
"property_names": ["particle_mass_function"],

b

Next, we need the function that will compute the values relevant for this property.

Saved in "~ "my_calculations_functions.py
from typing import Any

import numpy as np
from sage_analysis.model import Model
def calc_halo_parts(model: Model, gals: Any, snapshot: int) —-> None:

non_zero_parts = np.where(gals["Len"][:] > 0) [0]

halo_len = np.loglO(gals["Len"][:][non_zero_parts]) # Ensure that the data is_
—~the same units as bins.

gals_per_bin, np.histogram(halo_len, bins=model.bins["number particles_bins"])

Update properties to keep persistent across files.
model .properties[f"snapshot_{snapshot /"] ["particle mass_function"] += gals_per_bin

Then, the function that will plot the results.

Save as ' ‘my_plot_functions.py
from typing import List

from sage_analysis.model import Model
import matplotlib

import matplotlib.pyplot as plt
import numpy as np

colors = ["r", "g", "b", "c"]
linestyles = ["—=", "—. ", " "]
markers = ["x", "o"]

def plot_halo_parts(

models: List[Model], snapshots: List[List[int]], plot_output_path: str, plot_
—output_format: str = "png",
) —> matplotlib.figure.Figure:

fig = plt.figure()
ax = fig.add_subplot (111)

Go through each of the models and plot.
for model_num, (model, model_snapshots) in enumerate (zip (models, snapshots)):

Set the x-axis values to be the centre of the bins.

bin_widths = model.bins["number_particles_bins"][1l::] - model.bins["number__
—particles_bins"][0:-1]

bin_middles model .bins["number_ particles_bins"][:-1] + bin_widths

Colour will be used for the snapshot, linestyle for the model.
ls = linestyles[model_num]

(continues on next page)

16 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

label = model.label

for snapshot_num, snapshot in enumerate (model_snapshots) :

color = colors[snapshot_num]

ax.plot (
bin_middles,
model .properties[f"snapshot_ {snapshot /"] ["particle_mass_function"],
color=color,
ls=1s,
label=f"/label} - z = {model._redshifts[snapshot]:.2f}",

ax.set_xlabel (r"S\log_ Number Particles in Halo$")
ax.set_ylabel (r"SNS™")

ax.set_yscale("log", nonpositive="clip")
ax.legend()

fig.tight_layout ()

output_file = f"{plot_output_path/particles_in halos. {plot_output_format "
fig.savefig(output_file)

print (f"Saved file to {output_file ")

plt.close()

return fig

With everything defined and our functions written, we are now ready to execute sage-analysis itself.

from sage_analysis.galaxy analysis import GalaxyAnalysis
from sage_analysis.utils import generate_func_dict

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]

Generate the dictionaries with our custom functions.
calculation_functions = generate_func_dict (plot_toggles, _ name , "calc_ ")
plot_functions = generate_func_dict (plot_toggles, _ name__, "plot_")

We're good to go now!

galaxy_analysis = GalaxyAnalysis(
par_fnames,
plot_toggles=plot_toggles,
galaxy_properties_to_analyze=galaxy_properties_to_analyze,
history_redshifts=history_redshifts,
calculation_functions=calculation_functions,
plot_functions=plot_functions

galaxy_analysis.analyze_galaxies()
galaxy_analysis.generate_plots ()

Mass of Hot Gas as Function of Cold Gas

plot_toggles = {"hot_cold": True}
galaxy_properties_to_analyze = {

(continues on next page)

2.5. Analyzing Custom Properties 17

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

"hot_cold_scatter": {
"type": "scatter",
"property_names": ["hot_gas", "cold_gas"],

by

def calc_hot_cold(model: Model, gals: Any, snapshot: int) -> None:
non_zero_stellar = np.where(gals["StellarMass"][:] > 0.0) [0]

Remember that mass is kept in units of 1.0el0 Msun/h. Convert to loglO (Msun).

hot_gas_mass = np.loglO(gals["HotGas"][:][non_zero_stellar] » 1.0el0 / model.
—hubble_h)

cold_gas_mass = np.logl0(gals["ColdGas"][:][non_zero_stellar] * 1.0el0 / model.
—hubble_h)

Append to properties to keep persistent across files.
model .properties[f"snapshot_{snapshot /"] ["hot_gas"] = np.append(
model .properties[f"snapshot_{snapshot /"] ["hot_gas"], hot_gas_mass

model .properties[f"snapshot_{snapshot /"] ["cold _gas"] = np.append/

1

model .properties[f"snapshot_{snapshot /"] ["cold gas"], cold_gas_mass

def plot_hot_cold(

models: List[Model], snapshots: List[List[int]], plot_output_path: str, plot_
—output_format: str = "png",
) —> matplotlib.figure.Figure:

fig = plt.figure()
ax = fig.add_subplot (111)

Go through each of the models and plot.
for model_num, (model, model_snapshots) in enumerate (zip (models, snapshots)):

Colour will be used for the snapshot, marker style for the model.
marker = markers[model_num]
label = model.label

for snapshot_num, snapshot in enumerate (model_snapshots) :
color = colors[snapshot_num]

ax.scatter (
model .properties[f"snapshot_{snapshot /"] ["cold gas"],
model .properties[f"snapshot_{snapshot /"] ["hot_gas"],
marker=marker,
s=1,
color=color,
alpha=0.5,
label=f"/label} - z = {model._redshifts[snapshot]:.2f}",

ax.set_xlabel (r"$\log_ {10} Cold Gas Mass [M_\odot]$")
ax.set_ylabel (r"$\log_ {10} Hot Gas Mass [M_\odot]S$")

(continues on next page)

18 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

ax.legend()

fig.tight_layout ()

output_file = f"{plot_output_path/hot_cold. {plot_output_format
fig.savefig(output_£file)

print (f"Saved file to {output_file /")

plt.close()

return fig

Defining the Properties

Now, lets define the properties that will be used to store all of our results. As outlined in Defining Custom Properties,
each property type is defined in a slightly different manner.

galaxy_properties_to_analyze = {
"number_particles_bins": {
"type": "binned",
"bin_low": O,
"bin_high": 5,
"bin_width": 0.1,
"property_names": ["particle_mass_function"],

bo
"hot_cold_scatter": {

"type": "scatter",
"property_names": ["hot_gas", "cold_gas"],
}I
"time_major_merger": {
"type": "single",
"property_names": ["sum_time_since_major_merger", "var_time_since_major_merger

=", "num_galaxies"]

}

For the first property, we have used log-spaced bins. For the last property, we will track the sum and variance of the
time since major merger alongside the total number of galaxies. Then, when we plot, we can compute the mean and
show the mean plus variance trend.

Tracking a Property Over Redshift

We want to track the time since major merger over redshift explicitly. To do so, we need to specify the redshifts we
wish to track it over, history_redshifts.

history_redshifts = {"major_merger_history": "All"}

Note: The key names in this dictionary must exactly match the key name in plot_toggles.

2.5. Analyzing Custom Properties 19

SAGE-analysis Documentation, Release 0.0.1

Defining the Functions

The GalaxyAnalysis constructor accepts two key parameters: :calculation functions and
plot_functions. From these two dictionaries, the exact functions that need to be run for each galaxy file
and the functions that produce the final plots are defined. Under the hood, sage-analysis operates by looping over
calculation_functions and calling the constituent functions with the galaxies loaded for each file. To plot,
each function in plot_functions is called using the model data that has been previously analyzed.

Hence, to define your own custom properties, we must first update the calculation_ functions and
plot_functions and pass it to the GalaxyAnalysis constructor.

Let’s write the functions that will define the calculation functions that will be saved to module
my_calculation_functions.py. These will use our properties defined above to keep the values across differ-
ent files.

Saved in "~ "my_calculations_functions.py
from typing import Any

import numpy as np
from sage_analysis.model import Model
def calc_halo_parts(model: Model, gals: Any, snapshot: int) —-> None:
non_zero_parts = np.where(gals["Len"][:] > 0) [0]
halo_len = np.loglO(gals["Len"][:][non_zero_parts]) # Ensure that the data is_
—~the same units as bins.
gals_per_bin, _ = np.histogram(halo_len, bins=model.bins["number particles_bins"])
Update properties to keep persistent across files.
model .properties[f"snapshot_{snapshot /"] ["particle mass_function"] += gals_per_bin
def calc_hot_cold(model: Model, gals: Any, snapshot: int) -> None:

non_zero_stellar = np.where(gals["StellarMass"][:] > 0.0)[0]

Remember that mass is kept in units of 1.0el0 Msun/h. Convert to loglO (Msun).

hot_gas_mass = np.logl0(gals["HotGas"][:] [non_zero_stellar] » 1.0el0 / model.
—hubble_h)

cold_gas_mass = np.logl0(gals["ColdGas"][:][non_zero_stellar] » 1.0el0 / model.
—hubble_h)

Append to properties to keep persistent across files.
model .properties[f"snapshot_{snapshot /"] ["hot_gas"] = np.append (
model .properties[f"snapshot_{snapshot /"] ["hot_gas"], hot_gas_mass

model .properties[f"snapshot_ {snapshot/"]["cold gas"] = np.append (
model .properties[f"snapshot_{snapshot /"] ["cold _gas"], cold_gas_mass

def calc_major_merger_history(model: Model, gals: Any, snapshot: int) —-> None:
non_zero_stellar = np.where(gals["StellarMass"][:] > 0.0)[0]
time_since_major_merger = gals["TimeOfLastMajorMerger"][:][non_zero_stellar]

(continues on next page)

20 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

A galaxy that has not experienced a major merger will have a value of -1. Lets_
—~filter these out.

time_since_major_merger

= time_since_major_merger[time_since_major_merger > 0.0]

We will handle dividing out the number of galaxies and the number of samples (i.
—~e., number of files) when it

comes time to plot.

model .properties[f"snapshot_{snapshot "] ["sum_time_since_major_merger"] += np.
—sum(time_since_major_merger)

model .properties[f"snapshot_{snapshot /"] ["var_time_since_major_merger"] += np.
—var (time_since_major_merger)

model .properties[f"snapshot_{snapshot /"] ["num galaxies"] += len(time_since_major_
—merger)

With our calculation functions defined, we now need to define the plot functions. These functions will be used by
sage-analysis to generate the plots themselves. We will save these functions to the module my_plot_functions.
py.

Save as ~ 'my_plot_functions.py
from typing import List

from sage_analysis.model import Model
import matplotlib

import matplotlib.pyplot as plt
import numpy as np

colors = ["r", HgH, llb", IICH]
linestyles — ["__n, u_‘n, "‘n]
markers = [an, "O"]

def plot_halo_parts/(

models: List[Model], snapshots: List[List[int]], plot_output_path: str, plot_
—output_format: str = "png",
) —> matplotlib.figure.Figure:

fig = plt.figure()
ax = fig.add_subplot (111)

Go through each of the models and plot.
for model_num, (model, model_snapshots) in enumerate (zip(models, snapshots)):

Set the x-axis values to be the centre of the bins.

bin_widths = model.bins["number_ particles_bins"][l::] - model.bins["number_
—particles_bins"][0:-1]
bin_middles = model.bins["number_particles_bins"][:-1] + bin_widths

Colour will be used for the snapshot, linestyle for the model.
ls = linestyles[model_num]
label = model.label

for snapshot_num, snapshot in enumerate (model_snapshots) :
color = colors[snapshot_num]
ax.plot (

(continues on next page)

2.5. Analyzing Custom Properties 21

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

def

bin_middles,

model .properties[f"snapshot_{snapshot /"] ["particle_mass_function"],
color=color,
1ls=1s,
label=f"{label} - z = {model._redshifts[snapshot]:.2f}",
)
ax.set_xlabel (r"$\log_ {10} Number Particles in Halo$")

ax.set_ylabel (r"sns")

ax.set_yscale("log", nonpositive="clip")
ax.legend()

fig.tight_layout ()

output_file = f£"{plot_output_path/particles_in_halos. {plot_output_format /"
fig.savefig(output_file)

print (f"Saved file to {output_file ")

plt.close ()

return fig

plot_hot_cold(
models: List[Model], snapshots: List[List[int]], plot_output_path: str, plot_

—output_format: str = "png",
) —> matplotlib.figure.Figure:

fig = plt.figure()
ax = fig.add_subplot (111)

Go through each of the models and plot.
for model_num, (model, model_snapshots) in enumerate (zip (models, snapshots)):

Colour will be used for the snapshot, marker style for the model.
marker = markers[model_num]

label = model.label

for snapshot_num, snapshot in enumerate (model_snapshots) :
color = colors[snapshot_num]

ax.scatter (

model .properties[f"snapshot_{snapshot /"] ["cold_gas"],
model .properties[f"snapshot_{snapshot /"] ["hot_gas"],
marker=marker,
s=1,
color=color,
alpha=0.5,
label=f"{label} - z = {model._redshifts[snapshot]:.2f}",
)
ax.set_xlabel (r"$\log_ {10} Cold Gas Mass [M_\odot]s$")
ax.set_ylabel (r"$\log_ {10} Hot Gas Mass [M_\odot]S$")

ax.legend()

fig.tight_layout ()

(continues on next page)

22

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

output_file = £" {plot_output_path/hot_cold. {plot_output_format /"
fig.savefig(output_£file)

print (f"Saved file to {output_file ")

plt.close ()

return fig
def plot_major_merger_history(

models: List[Model], snapshots: List[List[int]], plot_output_path: str, plot_
—output_format: str = "png",

) —> matplotlib.figure.Figure:

fig = plt.figure()
ax = fig.add_subplot (111)

for (model_num, model) in enumerate (models) :

label = model.label

color = colors[model_num]
linestyle = linestyles|[model_num]
marker = markers[model_num]
sum_time_since_major_merger = np.array (
[model .properties[f"snapshot_{snap /"] ["sum_time_since_major_merger"] for

—snap in range (len(model.redshifts))]
)
var_time_since_major_merger = np.array (
[model.properties[f"snapshot_{snap/"]["var_time_since_major_merger"] for
—snap in range (len(model.redshifts))]
)
num_galaxies = np.array (
[model .properties[f"snapshot_{snap /"] ["num_galaxies"] for snap in_,
—range (len (model.redshifts))]
)
redshifts = model.redshifts

mean = sum / number of samples.
mean_time_since_major_merger = sum_time_since_major_merger / num_galaxies

Need to divide out the number of samples for the variance. This is the,
—number of files that we analyzed.

var_time_since_major_merger /= (model.last_file_to_analyze — model.first_file_
—to_analyze + 1)

All snapshots are initialized with zero values, we only want to plot those_
—non-zero values.
non_zero_inds = np.where (mean_time_since_major_merger > 0.0) [0]

Only use a line if we have enough snapshots to plot.
if len(non_zero_inds) > 20:
ax.plot (
redshifts[non_zero_inds],
mean_time_since_major_merger[non_zero_inds],
label=1label,
color=color,

(continues on next page)

2.5. Analyzing Custom Properties 23

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

ls=linestyle

)

else:

ax.scatter (
redshifts[non_zero_inds],
mean_time_since_major_merger [non_zero_inds],
label=1label,
color=color,
marker=marker,

ax.set_xlabel (r"S$S\mathrm{ re hift}$")
ax.set_ylabel (r"$Time Since Last Major Merger [Myr]S$")

ax.set_x1im([0.0, 8.0])
#ax.set_ylim([-3.0, -0.4])

ax.xaxis.set_minor_locator (plt.MultipleLocator(l))
#ax.yaxis.set_minor_locator (plt.MultipleLocator (0.5))

ax.legend()

fig.tight_layout ()

output_file = f£"{plot_output_path/time_since_last_major_merger. {plot_output_
—format } "

fig.savefig(output_£file)

print ("Saved file to {0}".format (output_file))

plt.close ()

return fig

Putting it Together

With everything defined and our functions written, we are now ready to execute sage-analysis itself.

import my_ calculation_functions, my_plot_functions

from sage_analysis.galaxy_ analysis import GalaxyAnalysis
from sage_analysis.utils import generate_func_dict

par_fnames = ["/home/Desktop/sage-model/input/millennium.ini"]

Generate the dictionaries with our custom functions.

calculation_functions = generate_func_dict (plot_toggles, "my_calculation_functions",
—"calc_")

plot_functions = generate_func_dict (plot_toggles, "my plot_functions", "plot_ ")

We're good to go now!

galaxy_analysis = GalaxyAnalysis (
par_fnames,
plot_toggles=plot_toggles,
galaxy_properties_to_analyze=galaxy_properties_to_analyze,
history_redshifts=history_redshifts,
calculation_functions=calculation_functions,

(continues on next page)

24 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

plot_functions=plot_functions

)

galaxy_analysis.analyze_galaxies|()
galaxy_analysis.generate_plots ()

And these are our plots that are generated. ..

2.6 Analyzing Custom Data

2.7 sage_analysis.GalaxyAnalysis

class sage_analysis.GalaxyAnalysis (sage_parameter_fnames: List[str], plot_toggles: Op-

tional[Dict[str, bool]] = None, sage_output_formats:
Optional[List[str]] = None, labels: Optional[List[str]]
= None, first_files_to_analyze: Optional[List[int]] =
None, last_files_to_analyze: Optional[List[int]] = None,

num_sage_output_files: Optional[List[int]] = None,
output_format_data_classes_dict: Optional[Dict{str,
Any]] = None, random_seeds: Optional[List[int]]
= None, history_redshifts: Optional[Dict{str,

Union[List[float], str]]] = None, calculation_functions:
Optional[Dict(str, Tuple[Callable, Dict[str, Any]]]] =
None, plot_functions: Optional[Dict[str, Tuple[Callable,
Dict[str, Any]]]] = None, galaxy_properties_to_analyze:
Optional[Dict[str, Dict[str, Union[str, List[str]]]]] =
None, plots_that_need_smf: Optional[List[str]] = None,
IMFs: Optional[List[str]] = None)

Handles the ingestion, analysis, and plotting of SAGE galaxy outputs.

__init__ (sage_parameter_fnames: List[str], plot_toggles: Optional[Dict[str, bool]] = None,

sage_output_formats: Optional[List[str]] = None, labels: Optional[List[str]] =
None, first_files_to_analyze: Optional[List[int]] = None, last_files_to_analyze: Op-
tional[List[int]] = None, num_sage_output files: Optional[List[int]] = None, out-
put_format_data_classes_dict: Optional[Dict[str, Any]] = None, random_seeds: Op-
tional[List[int]] = None, history_redshifts: Optional[Dict[str, Union[List[float], str]]]
= None, calculation_functions: Optional[Dict[str, Tuple[Callable, Dict[str, Any]]]] =
None, plot_functions: Optional[Dict[str, Tuple[Callable, Dict[str, Any]]]] = None,
galaxy_properties_to_analyze: Optional[Dict[str, Dict[str, Union[str, List[str]]]]] = None,
plots_that_need_smf: Optional[List[str]] = None, IMFs: Optional[List[str]] = None)

Parameters

» sage_parameter_fnames (/ist of strings) — The name of the SAGE parameter files that
are to be analyzed. These are the . ini files used to generate the galaxy files. The length
of this variable is equal to the number of models to be analyzed.

* plot_toggles (dict [str;, bool], optional) — Specifies which properties should be analyzed
and plotted.

If not specified, uses

2.6. Analyzing Custom Data

25

SAGE-analysis Documentation, Release 0.0.1

default_plot_toggles = {
"SME" : True,
"BME" : True,
"GME'" : True,
"BTF" : True,
"sSFR" : True,
"gas_fraction" : True,
"metallicity" : True,
"bh_bulge" : True,
"quiescent" : True,
"bulge_fraction" : True,
"baryon_fraction" : True,
"reservoirs" : True,
"spatial" : True,
"SMF_history": False,
"SFRD_history": False,
"SMD_history": False,

 sage_output_formats (list of strings, optional) — The output formats of each SAGE

model being analyzed. Each value here MUST have a corresponding entry in
output_format_data_classes_dict. The length of this variable is equal to the
number of models to be analyzed.

If not specified, will use the OutputFormat entry from the respective SAGE parameter
file.

labels (list of strings, optional) — The labels to be used in the legend for each model. The
length of this variable is equal to the number of models to be analyzed.

If not specified, will use the FileNameGalaxies entry from the respective SAGE pa-
rameter file.

first_files_to_analyze, last_files_to_analyze (list of ints, optional-ish) — The output
SAGE files to be analyzed. This is an inclusive range, with the output files analyzed
ranging from [first_file_to_analyze, last_file_to_analyze] foreach
model. The length of this variable is equal to the number of models to be analyzed.

If the corresponding entry in sage_output_format is sage_binary (whether
passed explicitly or read from sage_file), these two variables MUST be specified.
Otherwise, if not specified, will analyze ALL output HDF5 files.

num_sage_output_files (list of ints, optional-ish) — Specifies the number of output
files that were generated by running SAGE. This will generally be equal to the num-
ber of processors used to run SAGE and can be different to the range specified by
[first_file_to_analyze, last_file_to_analyze].

If the corresponding entry in sage_output_format is sage_binary (whether
passed explicitly or read from sage_file), this MUST be specified. Otherwise, this
variable is NOT used.

output_format_data_classes_dict (dict [string, class], optional) — A dictionary that
maps the output format name to the corresponding data class. Each value in
sage_output_formats MUST have an entry in this dictionary.

If not specified, will use a default value output_format_data_classes_dict =
{"sage_binary": SageBinaryData, "sage_hdf5": SageHdf5Data }.

random_seeds (list of ints, optional) — The values to seed the random number generator
for each model. If the value is None, then the generator is seeded using the np . random.

26

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

seed () method. The length of this variable is equal to the number of models to be
analyzed.

If not specified, uses None for each model (i.e., no predetermined seed).

history_redshifts (dict [string, string or list of floats], optional) — Specifies which red-
shifts should be analyzed for properties and plots that are tracked over time. The keys here
MUST have the same name as in plot_toggles.

If the value of the entry is "A11", then all snapshots will be analyzed. Otherwise, will
search for the closest snapshots to the requested redshifts.

If not specified, uses

history_redshifts = {

"SMF_history": "All",
"SMD_history": "All",
"SFRD_history": "All",

calculation_functions (dict [string, tuple(function, dict[string, variable])], optional) — A
dictionary of functions that are used to compute the properties of galaxies being analyzed.
Here, the string is the name of the plot toggle (e.g., "SMF"), the value is a tuple con-
taining the function itself (e.g., calc_SMF ()), and another dictionary which specifies
any optional keyword arguments to that function with keys as the name of variable (e.g.,
"calc_sub_populations™) and values as the variable value (e.g., True).

The functions in this dictionary are called for all files analyzed and MUST have a signature
func (model, gals, snapshot, optional_keyword_arguments). This
dict can be generated using generate func_dict ().

If not specified, will use the functions found in example_calcs, filtered to ensure that
only those functions necessary to plot the plots specified by plot_toggles are run.

plot_functions (dict [string, tuple(function, dict[string, variable])], optional) — A dictio-
nary of functions that are used to plot the properties of galaxies being analyzed. Here,
the string is the name of the function (e.g., "plot_SMF"), the value is a tuple con-
taining the function itself (e.g., plot_SMF ()), and another dictionary which specifies
any optional keyword arguments to that function with keys as the name of variable (e.g.,
"plot_sub_populations™) and values as the variable value (e.g., True).

The functions in this dictionary are called for all files analyzed and
MUST have a signature func (models, snapshots, plot_helper,
optional_keyword_arguments). This dict can be generated using
generate_func_dict ().

If not specified, will use the functions found in example plots, filtered to ensure that
only those functions necessary to plot the plots specified by plot_toggles are run.

galaxy_properties_to_analyze (dict [string, dict[str, float or str or list of
strings]], optional) — The galaxy properties that are wused when running
calculation_functions. The properties initialized here will be accessible
through model .properties["property_name"].

This variable is a nested dictionary with the outer dictionary specifying the name of the
bins (if the properties will be binned), or a unique name otherwise.

The inner dictionary has a number of fields that depend upon the type of property. We
support properties being either binned against a property (e.g., the stellar or halo mass
functions are binned on stellar/halo mass), plotted as x-vs-y scatter plots (e.g., specific star

2.7. sage_analysis.GalaxyAnalysis

27

SAGE-analysis Documentation, Release 0.0.1

formation rate vs stellar mass for 1000 galaxies), or as a single value (e.g., the stellar mass

density).

For binned against a property, the key/value pairs are:
The lower bound of the bin
(float),
A list of strings denoting the

bin_low:
upper bound of the bin
bin (float),

property_names:

bin_width:

"type mw .
(float),

"binned",
bin_high: The
The width of the

properties to be initialised. The bin values are all initialized as 0.0.

For properties to be plotted as x-vs-y scatter plots, the key/value pairs are: "type":

"scatter",

property_names:

A list of strings denoting the

properties to be initialised. All properties are initialized as empty lists.

For properties that are single values, the key/value pairs are: "type":
A list of strings denoting the properties

property_names:

"single",

to be initialised. All properties are initialized with a value of 0.0.

If not specified, uses

"centrals_MF",
—counts",

—counts",

}I

"halo_mass_bins": {
"type":
"bin_low":
"bin_high": 14.0,
"bin_width": 0.1,
"property_names":

—~fraction_sum"

"binned",
10.0,

—"ejected",

] 4

llICS" llbh"]
4
}s
"scatter_properties":
lltype" :
"property_names":
"BTF_mass",

"scatter",

"metallicity",

—mvir",

lly_pos n ,

by

default_galaxy_properties_to_analyze

"quiescent_centrals_counts",

"fraction_bulge_sum",
"fraction_disk_sum",

for component in ["baryon",

"BTF_vel",
"gas_frac_mass",

"reservoir_stars",
"reservoir_ejected",

=1

"stellar_mass_bins": {
"type": "binned",
"bin_low": 8.0,
"bin_high": 12.0,
"bin_width": 0.1,
"property_names": [
"SMF", "red_SMF", "blue_SMF", "BMF",

"satellites_MF",

["fof HMEF"] +

"stars",

{

[
"sSFR_mass",
"gas_frac",
"bh_mass",

"reservoir_cold",

" pOS"

"quiescent_galaxy__
"quiescent_satellites_

"fraction_bulge_var",
"fraction_disk_var",

[f"halo_

"metallicity_mass",
"bulge_mass",

"reservoir_ICS",

"GME" ,

"SMF_history

{component }__

"COld", "hOt",

"SSFR_SSFR",

"reservoir_

"reservoir_hot",
"XipOS n ,

(continues on next page)

28

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

(continued from previous page)

"single_properties": {

"type": "single",

"property_names": ["SMD_history", "SFRD_history"],
}y

* plots_that_need_smf (list of strings, optional) — The plot toggles that require the stellar
mass function to be properly computed and analyzed. For example, plotting the quiescent
fraction of galaxies requires knowledge of the total number of galaxies. The strings here
must EXACTLY match the keys in plot_toggles.

If not specified, wuses a default wvalue of ["SMF", "quiescent",
"bulge_fraction", "SMF_history"].

e IMFs (list of strings, optional, {"Chabrier", "Salpeter"}) — The initial mass
functions used during the analysis of the galaxies. This is used to shift the observational
data points. The length of this variable is equal to the number of models to be analyzed.

If not specified, uses a "Chabrier" IMF for each model.

analyze_galaxies (snapshots: Optional[List[List/Union[str, int]]]] = None, redshifts: Op-
tional[List[List[Union[float, str]]]] = None, analyze_history_snapshots: bool

= True) — None
Analyses the galaxies of the initialized models. These attributes will be updated di-

rectly, with the properties accessible via GalaxyAnalysis.models[<model_num>].
properties[<snapshot>] [<property_name>].

Also, all snapshots required to track the properties over time (as specified by
_history_snaps_to_loop) will be analyzed, unless analyze_history_snapshots is
False.

Parameters

» snapshots (nested list of ints or string, optional) — The snapshots to analyze for each
model. If both this variable and redshi fts are not specified, uses the highest snapshot
(i.e., lowest redshift) as dictated by the redshi ft s attribute from the parameter file read
for each model.

If an entry if "A11", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

Notes

If analyze_history_snapshots is True, then the snapshots iterated over will be
the unique combination of the snapshots required for history snapshots and those specified
by this variable.

Warning: Only ONE of snapshots and redshifts can be specified.

redshifts (nested list of ints, optional) — The redshift to analyze for each model. If both
this variable and snapshots are not specified, uses the highest snapshot (i.e., lowest
redshift) as dictated by the redshi fts attribute from the parameter file read for each
model.

2.7. sage_analysis.GalaxyAnalysis 29

SAGE-analysis Documentation, Release 0.0.1

The snapshots selected for analysis will be those that result in the redshifts closest to those
requested. If an entry if "A11", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num _models.
Notes
If analyze_history_snapshots is True, then the snapshots iterated over will be

the unique combination of the snapshots required for history snapshots and those specified
by this variable.

Warning: Only ONE of snapshots and redshifts can be specified.

« analyze_history_snapshots (bool, optional) — Specifies whether the snapshots required to
analyze the properties tracked over time (e.g., stellar mass or star formation rate density)
should be iterated over. If not specified, then only snapshot will be analyzed.

Notes

If you wish to analyze different properties to when you initialized an instance of GalaxyAnalysis,
you MUST re-initialize another instance. Otherwise, the properties will be non-zeroed and not initialized
correctly.

ValueError Thrown if BOTH snapshots and redshifts are specified.

generate_plots (snapshots: Optional[List[List[Union/[str, int]]]] = None, red-
shifts: Optional[List[List[Union[float, str]]]] = None, plot_helper:
Optional[sage_analysis.plot_helper.PlotHelper] = None) — Op-

tional[List[matplotlib.figure.Figure]]
Generates the plots for the models being analyzed. The plots to be created are defined by the

values of plot_toggles specified when an instance of GalaxyAnalysis was initialized. If
you wish to analyze different properties or create different plots, you MUST initialize another in-
stance of GalaxyAnalysis with the new values for plot_toggles (ensuring that values of
calcuations_functions and plot_functions are updated if using non-default values for
plot_toggles).

This method should be run after analysing the galaxies using :py:method:‘~analyze_galaxies‘.
Parameters

* snapshots (nested list of ints or string, optional) — The snapshots to plot for each model.
If both this variable and redshifts are not specified, uses the highest snapshot (i.e.,
lowest redshift) as dictated by the redshi £t s attribute from the parameter file read for
each model.

If an entry if "A11", then all snapshots for that model will be analyzed.
The length of the outer list MUST be equal to num_models.

For properties that aren’t analyzed over redshift, the snapshots for each model will be
plotted on each figure. For example, if we are plotting a single model, setting this variable
to [[63, 501]1] will give results for snapshot 63 and 50 on each figure. For some plots
(e.g., those properties that are scatter plotted), this is undesirable and one should instead
iterate over single snapshot values instead.

30

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

Notes

If analyze_history_snapshots is True, then the snapshots iterated over will be
the unique combination of the snapshots required for history snapshots and those specified
by this variable.

Warning: Only ONE of snapshots and redshifts can be specified.

* redshifts (nested list of ints, optional) — The redshift to plot for each model. If both this
variable and snapshot s are not specified, uses the highest snapshot (i.e., lowest redshift)
as dictated by the redshi £t s attribute from the parameter file read for each model.

The snapshots selected for analysis will be those that result in the redshifts closest to those
requested. If an entry if "A11", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

Warning: Only ONE of snapshots and redshifts can be specified.

* plot_helper (P1lotHelper, optional) — A helper class that contains attributes and meth-
ods to assist with plotting. In particular, the path where the plots will be saved and the
output format. Refer to ../user/plot_helper for more information on how to initialize this
class and its use.

If not specified, then will initialize a default instance of PlotHelper. Refer to the
PlotHelper documentation for a list of default attributes.

Returns
* None — Returned if plot_toggles is an empty dictionary.
* figs — The figures generated by the plot_ functions functions.

history redshifts
Specifies which redshifts should be analyzed for properties and plots that are tracked over time. The keys
here MUST correspond to the keys in plot_toggles. If the value of the entry is "A11", then all
snapshots will be analyzed. Otherwise, will search for the closest snapshots to the requested redshifts.

Type dict [string, string or list of floats]

models
The Mode1 s being analyzed.

Type list of Mode class instances

num_models
The number of models being analyzed.

Type int

output_format_data_ classes_dict
A dictionary that maps the output format name to the corresponding data class.

Type dict [str, class]

plot_functions
A dictionary of functions that are used to plot the properties of galaxies being analyzed. Here, the outer
key is the name of the corresponding plot toggle (e.g., "SMF "), the value is a tuple containing the function
itself (e.g., plot_SMF ()), and another dictionary which specifies any optional keyword arguments to

2.7. sage_analysis.GalaxyAnalysis 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SAGE-analysis Documentation, Release 0.0.1

that function with keys as the name of variable (e.g., "plot_sub_populations") and values as the
variable value (e.g., True).

The functions in this dictionary are called for all files analyzed and MUST have a
signature func (Models, snapshot, plot_helper, plot_output_format,
optional_keyword_arguments). This dict can be generated using generate func_dict ().

Type dict [str, tuple(function, dict [str, any])]

plot_toggles
Specifies which properties should be analyzed and plotted.

Type dict [str, bool]

2.8 sage_analysis.Model

This module contains the Model class. The Model class contains all the data paths, cosmology etc for calculating
galaxy properties.

To read SAGE data, we make use of specialized Data Classes (e.g., SageBinaryData
and:py:class:~sage_analysis.sage_hdf5.SageHdf5Data). =~ We refer to ../user/data_class for more information
about adding your own Data Class to ingest data.

To calculate (and plot) extra properties from the SAGE output, we refer to ../user/calc.rst and ../user/plotting.rst.

class sage_analysis.model.Model (sage_file: str, sage_output_format: Optional[str], label:
Optional[str], first_file_to_analyze: int, last_file_to_analyze:
int, num_sage_output_files: Optional[int], random_seed:
Optional[int], IMF: str, plot_toggles: Dict[str, bool],
plots_that_need_smf: List[str], sample_size: int = 1000, sS-

FRcut: float = -11.0)
Handles all the galaxy data (including calculated properties) for a SAGE model.

The ingestion of data is handled by inidivudal Data Classes (e.g., SageBinaryData and SageHdf5Data).
We refer to ../user/data_class for more information about adding your own Data Class to ingest data.

__init__ (sage_file: str, sage_output_format: Optional[str], label: Optional[str],
first_file_to_analyze: int, last_file_to_analyze: int, num_sage_output_files: Optional[int],
random_seed: Optional[int], IMF: str, plot_toggles: Dict[str, bool], plots_that_need_smf:
List[str], sample_size: int = 1000, sSFRcut: float = -11.0)

Sets the galaxy path and number of files to be read for a model. Also initialises the plot toggles that dictates
which properties will be calculated.

Parameters

* label (str, optional) — The label that will be placed on the plots for this model. If not
specified, will use FileNameGalaxies read from sage_file.

» sage_output_format (str;, optional) — If not specified will use the OutputFormat read
from sage_file.

* num_sage_output_files (int, optional) — Specifies the number of output files that
were generated by running SAGE. This can be different to the range specified by
[first_file_to_analyze, last_file_to_analyze].

Notes

This variable only needs to be specified if sage_output_format is sage_binary.

32 Chapter 2. Maintainers

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

SAGE-analysis Documentation, Release 0.0.1

sample_size (int, optional) — Specifies the length of the properties attributes
stored as 1-dimensional ndarray. These properties are initialized using
init_scatter_properties ().

sSFRcut (float, optional) — The specific star formation rate above which a galaxy is flagged
as “star forming”. Units are log10.

calc_properties (calculation_functions, gals, snapshot: int)
Calculates galaxy properties for a single file of galaxies.

Parameters

Notes

If sage

calculation_functions (dict [string, function]) — Specifies the functions used to calculate
the properties. All functions in this dictionary are called on the galaxies. The function
signature is required to be func (Model, gals)

gals (exact format given by the Mode 1 Data Class.) — The galaxies for this file.

snapshot (inf) — The snapshot that we’re calculating properties for.

output_format 1S sage_binary, gals 1is a numpy structured array.

It

sage_output_format: is sage_hdf5, gals is an open HDF5 group. We refer to ../user/data_class
for more information about adding your own Data Class to ingest data.

calc_properties_all_files (calculation_functions, snapshot: int, close_file: bool = True,

use_pbar: bool = True, debug: bool = False)

Calculates galaxy properties for all files of a single Mode 1.

Parameters

calculation_functions (dict [string, list(function, dict[string, variable])]) — Specifies the
functions used to calculate the properties of this Mode 1. The key of this dictionary is the
name of the plot toggle. The value is a list with the Oth element being the function and
the 1st element being a dictionary of additional keyword arguments to be passed to the
function. The inner dictionary is keyed by the keyword argument names with the value
specifying the keyword argument value.

All functions in this dictionary for called after the galaxies for each sub-file have been
loaded. The function signature is required to be func (Model, gals, <Extra
Keyword Arguments>).

snapshot (inf) — The snapshot that we’re calculating properties for.

close_file (boolean, optional) — Some data formats have a single file data is read from
rather than opening and closing the sub-files in read_gals (). Hence once the prop-
erties are calculated, the file must be closed. This variable flags whether the data class
specific close_file () method should be called upon completion of this method.

use_pbar (Boolean, optional) — If set, uses the t gdm package to create a progress bar.

debug (Boolean, optional) — If set, prints out extra useful debug information.

init_binned_properties (bin_low: float, bin_high: float, bin_width: float, bin_name: str, prop-

erty_names: List[str], snapshot: int)

Initializes the properties (and respective bins) that will binned on some variable. For example, the
stellar mass function (SMF) will describe the number of galaxies within a stellar mass bin.

bins can be accessed via Model.bins["bin_name"] and are initialized as ndarray.
properties can be accessed via Model.properties["property_name"] and are initialized
using numpy . zeros.

2.8. sage_analysis.Model

33

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros

SAGE-analysis Documentation, Release 0.0.1

Parameters

¢ bin_low, bin_high, bin_width (floats) — Values that define the minimum, maximum and
width of the bins respectively. This defines the binning axis that the property_names
properties will be binned on.

e bin_name (string) — Name of the binning axis, accessed by Model.
bins["bin_name"].

* property_names (list of strings) — Name of the properties that will be binned
along the defined binning axis. Properties can be accessed using Model.
properties["property_name"]; e.g., Model.properties["SMF"] would
return the stellar mass function that is binned using the bin_name bins.

* snapshot (int) — The snapshot we’re initialising the properties for.

init_scatter_properties (property_names: List[str], snapshot: int)
Initializes the properties that will be extended as ndarray. These are used to plot (e.g.,) a the star
formation rate versus stellar mass for a subset of sample size galaxies. Initializes as empty ndarray.

Parameters

» property_names (list of strings) — Name of the properties that will be extended as
ndarray.

« snapshot (inf) — The snapshot we’re initialising the properties for.

init_single_properties (property_names: List[str], snapshot: int) — None
Initializes the properties that are described using a single number. This is used to plot (e.g.,) a the
sum of stellar mass across all galaxies. Initializes as 0. 0.

Parameters

* property_names (/ist of strings) — Name of the properties that will be described using a
single number.

* snapshot (inf) — The snapshot we’re initialising the properties for.

select_random_galaxy_indices (inds: numpy.ndarray, num_inds_selected_already: int) —

numpy.ndarray
Selects random indices (representing galaxies) from inds. This method assumes that the total number of

galaxies selected across all SAGE files analyzed is sample size and that (preferably) these galaxies
should be selected equally amongst all files analyzed.

For example, if we are analyzing 8 SAGE output files and wish to select 10,000 galaxies, this function
would hence select 1,250 indices from inds.

If the length of inds is less than the number of requested values (e.g., inds only contains 1,000 values),
then the next file analyzed will attempt to select 1,500 random galaxies (1,250 base plus an addition 250
as the previous file could not find enough galaxies).

At the end of the analysis, if there have not been enough galaxies selected, then a message is sent to the
user.

IMF
The initial mass function.

Type {"Chabrier", "Salpeter"}

base_sage_data_path
Base path to the output data. This is the path without specifying any extra information about redshift or
the file extension itself.

Type string

34 Chapter 2. Maintainers

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SAGE-analysis Documentation, Release 0.0.1

bins
The bins used to bin some properties. Bins are initialized through
init_binned_properties(). Key is the name of the bin, (bin_name in

init_binned properties()).
Type dict [string, ndarray]

box size
Size of the simulation box. Units are Mpc/h.

Type float

calculation functions
A dictionary of functions that are used to compute the properties of galaxies. Here, the string is the name
of the toggle (e.g., "SMF"), the value is a tuple containing the function itself (e.g., calc_SMF ()), and
another dictionary which specifies any optional keyword arguments to that function with keys as the name
of variable (e.g., "calc_sub_populations") and values as the variable value (e.g., True).

Type dict[str, tuple[func, dict[str, any]]]

first_file to_analyze
The first SAGE sub-file to be read. If sage output_format is sage_binary, files read must be
labelled sage data_pathXXX. If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases, XXX represents the num-
bersintherange [first_file to_analyze, last_file to_analyze]inclusive.

Type int
hubble_h
Value of the fractional Hubble parameter. Thatis, H = 100+hubble_h.
Type float
label
Label that will go on axis legends for this Mode .
Type string

last_file_to_analyze
The last SAGE sub-file to be read. If sage output_format is sage_binary, files read must be
labelled sage data_pathXXX. If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases, XXX represents the num-
bersintherange [first_file to_analyze, last_file_ to_analyze]inclusive.

Type int

num_gals_all files
Number of galaxies across all files. For HDF5 data formats, this represents the number of galaxies across
all Core_XXX sub-groups.

Type int

num_sage_output_files
The number of files that SAGE wrote. This will be equal to the number of processors the SAGE ran with.

Notes

If sage_output_format is sage_hdf5, this attribute is not required.

Type int

2.8. sage_analysis.Model 35

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

SAGE-analysis Documentation, Release 0.0.1

output_path
Path to where some plots will be saved. Used for plot_spatial_3d().

Type string

parameter_dirpath
The directory path to where the SAGE paramter file is located. This is only the base directory path and
does not include the name of the file itself.

Type str

plot_toggles
Specifies which plots should be created for this model. This will control which properties should be
calculated; e.g., if no stellar mass function is to be plotted, the stellar mass function will not be computed.

Type dict[str, bool]

plots_that_need_smf
Specifies the plot toggles that require the stellar mass function to be properly computed and analyzed. For
example, plotting the quiescent fraction of galaxies requires knowledge of the total number of galaxies.
The strings here must EXACTLY match the keys in plot_toggles.

Type list of ints

properties
The galaxy properties stored across the input files and snapshots. These properties are updated within the
respective calc_<plot_toggle> functions.

The outside key is "snapshot_XX" where XX is the snapshot number for the property. The inner key is
the name of the proeprty (e.g., "SME").

Type dict [string, dict [string, ndarray]] or dict[string, dict[string, float]

random_seed
Specifies the seed used for the random number generator, used to select galaxies for plotting purposes. If
None, then uses default call to seed ().

Type Optional[int]

redshifts
Redshifts for this simulation.

Type ndarray

sSFRcut
The specific star formation rate above which a galaxy is flagged as “star forming”. Units are log10.

Type float

sage_data_ path
Path to the output data. If sage output_format is sage_binary, files read must be la-
belled sage _data_pathXXX. If sage output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX at snapshot snapshot. In both cases,
XXX represents the numbers in the range [first_file to_analyze, last_file to_analyze]
inclusive.

Type string

sage_file
The path to where the SAGE . in1i file is located.

Type str

36

Chapter 2. Maintainers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

SAGE-analysis Documentation, Release 0.0.1

sage_output_format
The output format SAGE wrote in. A specific Data Class (e.g., SageBinaryData and
SageHdf5Data) must be written and used for each sage output_format option. We refer to
./user/data_class for more information about adding your own Data Class to ingest data.

Type {"sage_binary", "sage_binary"}

sample_size
Specifies the length of the properties attributes stored as 1-dimensional ndarray. These
properties are initialized using init_scatter properties().

Type int

snapshot
Specifies the snapshot to be read. If sage_output_format is sage_hdf5, this specifies the HDF5
group to be read. Otherwise, if sage_output_format is sage_binary, this attribute will be used
to index redshifts and generate the suffix for sage_data_path.

Type int

volume
Volume spanned by the trees analyzed by this model. This depends upon the number of files processed,
[:py:attr: ~first_file_to_analyze , :py:attr: ~last_file_to_analyze],
relative to the total number of files the simulation spans over, num_sim_tree_files.

Notes

This is not necessarily box_size cubed. It is possible that this model is only analysing a subset of files
and hence the volume will be less.

Type volume

2.9 sage_analysis.sage_hdf5

This module defines the SageHdf5Data class. This class interfaces with the Mode1 class to read in binary data
written by SAGE. The value of sage_output_format is generally sage_hdf5 if it is to be read with this class.

If you wish to ingest data from your own flavour of SAGE, please open a Github issue, I plan to add this documentation
in future :)

Author: Jacob Seiler.

class sage_analysis.sage_hdf5.SageHdf5Data (model: sage_analysis.model.Model,

sage_file_to_read: str)
Class intended to inteface with the Mode 1 class to ingest the data written by SAGE. It includes methods for

reading the output galaxies, setting cosmology etc. It is specifically written for when sage _output_format
is sage_hdf5.

__init__ (model: sage_analysis.model. Model, sage_file_to_read: str) — None
Instantiates the Data Class for reading in SAGE HDF5 data. In particular, opens up the file and ensures
the data version matches the expected value.

Parameters model (Mode I instance) — The model that this data class is associated with; this
class will read the data for this model.

close_file (model)
Closes the open HDFS file.

2.9. sage_analysis.sage_hdf5 37

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

SAGE-analysis Documentation, Release 0.0.1

determine_num_gals (model: sage_analysis.model. Model, snapshot: int, *args)
Determines the number of galaxies in all cores for this model at the specified snapshot.

Parameters
* model (Mode class) — The Mode 1 we’re reading data for.
* snapshot (int) — The snapshot we’re analysing.

* *args (Any) — Extra arguments to allow other data class to pass extra arguments to their
version of determine_num_gals.

determine_volume_analyzed (model: sage_analysis.model. Model) — float
Determines the volume analyzed. This can be smaller than the total simulation box.

Parameters model (Mode I instance) — The model that this data class is associated with.

Returns volume — The numeric volume being processed during this run of the code in
(Mpc/h)"3.

Return type float

read_gals (model: sage_analysis.model. Model, core_num: int, snapshot: int, pbar: Op-

tional[tgdm.std.tqdm] = None, plot_galaxies: bool = False, debug: bool = False) — Any
Reads the galaxies of a single core at the specified snapshot.

Parameters
* model (Mode class) — The Mode 1 we’re reading data for.
* core_num (Integer) — The core group we’re reading.

* pbar (tgdm class instance, optional) — Bar showing the progress of galaxy reading. If
None, progress bar will not show.

* plot_galaxies (Boolean, optional) — If set, plots and saves the 3D distribution of galaxies
for this file.

* debug (Boolean, optional) — If set, prints out extra useful debug information.
Returns gals — The galaxies for this file.

Return type h5py group

Notes
tgdm does not play nicely with printing to stdout. Hence we disable the tgdm progress bar if
debug=True.

read_sage_params (sage_file_path: str) — Dict[str, Any]
Read the SAGE parameter file.

Parameters sage_file_path (string) — Path to the SAGE parameter file.
Returns model_dict — Dictionary containing the parameter names and their values.
Return type dict [str, var]

update_snapshot_and_data_path (model: sage_analysis.model. Model, snapshot: int)
Updates the snapshot attribute to snapshot. As the HDFS5 file contains all snapshot information, we
do not need to update the path to the output data. However, ensure that the file itself is still open.

38 Chapter 2. Maintainers

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SAGE-analysis Documentation, Release 0.0.1

2.10 sage_analysis.sage_binary

This module defines the SageBinaryData class. This class interfaces with the Mode I class to read in binary data
written by SAGE. The value of sage_output_format is generally sage_binary if it is to be read with this
class.

If you wish to ingest data from your own flavour of SAGE, please open a Github issue, I plan to add this documentation
in future :)

Author: Jacob Seiler.

class sage_analysis.sage_binary.SageBinaryData (model: sage_analysis.model.Model,

sage_file_to_read: str)
Class intended to inteface with the Mode1 class to ingest the data written by SAGE. It includes methods for

reading the output galaxies, setting cosmology etc. It is specifically written for when sage_output_format
is sage_binary.

__init__ (model: sage_analysis.model.Model, sage_file_to_read: str) — None
Instantiates the Data Class for reading in SAGE binary data. In particular, generates the numpy structured
array to read the output galaxies.

model: Model instance The model that this data class is associated with; this class will read the data for
this model.

close_file (model: sage_analysis.model. Model)
An empty method to ensure consistency with the HDF5 data class. This is empty because snapshots are
saved over different files by default in the binary format.

determine_num_gals (model: sage_analysis.model. Model, *args)
Determines the number of galaxies in all files for this ModeI.

Parameters
* model (Mode class) — The Mode 1 we’re reading data for.

* *args (Any) — Extra arguments to allow other data class to pass extra arguments to their
version of determine_num_gals.

determine_volume_analyzed (model: sage_analysis.model. Model) — float
Determines the volume analyzed. This can be smaller than the total simulation box.

Parameters model (Mode I instance) — The model that this data class is associated with.

Returns volume — The numeric volume being processed during this run of the code in
(Mpc/h)"3.

Return type float

read_gals (model: sage_analysis.model.Model, file_num: int, snapshot: int, pbar: Op-

tional[tgdm.std.tqdm] = None, plot_galaxies: bool = False, debug: bool = False)
Reads the galaxies of a model file at snapshot specified by snapshot.

Parameters
* model (Mode class) — The Mode 1 we’re reading data for.
« file_num (inf) — Suffix number of the file we’re reading.

e pbar (tgdm class instance, optional) — Bar showing the progress of galaxy reading. If
None, progress bar will not show.

* plot_galaxies (bool, optional) — If set, plots and saves the 3D distribution of galaxies for
this file.

2.10. sage_analysis.sage_binary 39

https://docs.python.org/3/library/functions.html#float

SAGE-analysis Documentation, Release 0.0.1

* debug (bool, optional) — If set, prints out extra useful debug information.
Returns gals — The galaxies for this file.

Return type numpy structured array with format given by :py:method:‘~_get_galaxy_struct*

Notes
tgdm does not play nicely with printing to stdout. Hence we disable the tgdm progress bar if
debug=True.

read_sage_params (sage_file_path: str) — Dict[str, Any]
Read the SAGE parameter file.

Parameters sage._file_path (string) — Path to the SAGE parameter file.
Returns model_dict — Dictionary containing the parameter names and their values.
Return type dict [str, var]

update_snapshot_and_data_path (model: sage_analysis.model.Model, snapshot: int,

use_absolute_path: bool = False)
Updates the _sage_data_path to point to a new redshift file. Uses the redshift array redshi fts.

Parameters
* snapshot (inf) — Snapshot we’re updating _sage_data_path to point to.

* use_absolute_path (bool) — If specified, will use the absolute path to the SAGE output
data. Otherwise, will use the path that is relative to the SAGE parameter file. This is hand
because the SAGE parameter file can contain either relative or absolute paths.

2.11 sage_analysis.example_calcs

Here we show a myriad of functions that can be used to calculate properties from the SAGE output. By setting the
correct plot toggles and calling generate func_dict (), adictionary containing these functions can be generated
and passed to calc_properties_all_files () to calculate the properties.

The properties are stored (and updated) in the properties attribute.
We refer to ../user/analysing_sage for more information on how the calculations are handled.
Author: Jacob Seiler

sage_analysis.example_calcs.calc_BMF (model, gals, snapshot: int)
Calculates the baryon mass function of the given galaxies. That is, the number of galaxies at a given baryon
(stellar + cold gas) mass.

The Model .properties["snapshot_<snapshot>"] ["BMF"] array will be updated.

sage_analysis.example_calcs.calc_BTF (model, gals, snapshot: int)
Calculates the baryonic Tully-Fisher relation for spiral galaxies in the given set of galaxies.

The number of galaxies added to Model .properties|["snapshot_<snapshot>"] ["BTF_mass"]
and Model.properties|["snapshot_<snapshot>"] ["BTF_vel"] arrays is given by
sample_size weighted by number_spirals_passed / _num_gals_all_files. If this value is
greater than number_spirals_passed, then all spiral galaxies will be used.

40 Chapter 2. Maintainers

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.example_calcs.calc_GMF (model, gals, snapshot: int)
Calculates the gas mass function of the given galaxies. That is, the number of galaxies at a given cold gas mass.

The Model .properties["snapshot_<snapshot>"] ["GMF"] array will be updated.

sage_analysis.example_calcs.calec_SFRD_history (model, gals, snapshot: int)
Calculates the sum of the star formation across all galaxies. This will be normalized by the simulation volume
to determine the density. See plot_SFRD () for full implementation.

The Model .properties["snapshot_<snapshot>"] ["SFRD"] value is updated.

sage_analysis.example_calcs.calc_SMD_history (model, gals, snapshot: int)
Calculates the sum of the stellar mass across all galaxies. This will be normalized by the simulation volume to
determine the density. See plot_SMD () for full implementation.

The Model .properties["snapshot_<snapshot>"] ["SMD"] value is updated.
sage_analysis.example_calcs.calc_SMF (model: sage_analysis.model.Model, gals, snap-
shot: int, calc_sub_populations: bool = False,

smf_property_name: str = 'SMF"’)
Calculates the stellar mass function of the given galaxies. That is, the number of galaxies at a given stellar mass.

The Model.properties["snapshot_<snapshot>"]"SMF"] array will be updated. We
also split the galaxy population into “red” and “blue” based on the value of sSFRcut and up-
date the Model.properties["snapshot_<snapshot>"] ["red_SMF"] and Model.
properties["snapshot_<snapshot>"] ["blue_SMF"] arrays.

Parameters

* snapshot (inf) — The snapshot the SMF is being calculated at.

* plot_sub_populations (boolean, optional) — If True, calculates the stellar mass function
for red and blue sub-populations.

o smf_property_name (string, optional) — The name of the property used to store the stellar
mass function. Useful if different calculations are computing the stellar mass function but
saving it as a different property.

sage_analysis.example_calcs.calec_SMF_history (model, gals, snapshot: int)
Calculates the stellar mass function of the given galaxies. That is, the number of galaxies at a given stellar mass.

The Model .properties ["SMF"_history] array will be updated.

sage_analysis.example_calcs.calc_baryon_fraction (model, gals, snapshot: int)
Calculates the mass_baryons / halo_virial_mass as a function of halo virial mass for each baryon
reseroivr (stellar, cold, hot, ejected, intra-cluster stars and black hole). Also calculates the ratio for the total
baryonic mass.

The Model .properties["snapshot_<snapshot>"] ["halo_<reservoir_name>_fraction_sum"]

arrays are updated for each reservoir. In addition, Model .properties["snapshot_<snapshot>"] ["halo_baryon_1
is updated.

Notes

The halo virial mass we use is the background FoF halo, not the immediate host halo of each galaxy.

We only sum the baryon mass in each stellar mass bin. When converting this to the
mass fraction, one must divide by the number of halos in each halo mass bin, Model.
properties["snapshot_<snapshot>"]["fof_ HMF"]. See plot_baryon_ fraction ()

for full implementation.

2.11. sage_analysis.example_calcs 41

SAGE-analysis Documentation, Release 0.0.1

If the Model .properties["snapshot_<snapshot>"] ["fof_HMF"] property, with associated bins
Model .bins["halo_mass"bin"] have not been initialized, a ValueError is thrown.

sage_analysis.example_calcs.calc_bh_bulge (model, gals, snapshot: int)
Calculates the black hole mass as a function of bulge mass.

The number of galaxies added to Model .properties|["snapshot_<snapshot>"] ["BlackHoleMass"]
and Model .propertiesp["snapshot_<snapshot>"] ["BulgeMass"] arrays is given by
sample_size weighted by number_galaxies_passed /_num_gals_all_files. If this value is
greater than number_galaxies_passed, then all galaxies will be used.

Notes

We only consider galaxies with bulge mass greater than 108 Msun/h and a black hole mass greater than 10"5
Msun/h.

sage_analysis.example_calcs.calc_bulge_fraction (model, gals, snapshot: int)
Calculates the bulge_mass / stellar_mass and disk_mass / stellar_mass ratios as a func-
tion of stellar mass.

The Model .properties|["snapshot_<snapshot>"] ["fraction_bulge_sum"],
Model .properties["snapshot_<snapshot>"] ["fraction_disk_sum"], Model.
properties["snapshot_<snapshot>"] ["fraction_bulge_var"], Model.
properties["snapshot_<snapshot>"] ["fraction_disk_var"] arrays will be updated.
Notes

We only sum the bulge/disk mass in each stellar mass bin. When converting this to the mass fraction,
one must divide by the number of galaxies in each stellar mass bin, the stellar mass function Model.
properties["snapshot_<snapshot>"] ["SME"]. See plot_bulge fraction () for full im-
plementation.

sage_analysis.example_calcs.calc_gas_£fraction (model, gals, snapshot: int)
Calculates the fraction of baryons that are in the cold gas reservoir as a function of stellar mass.

The number of galaxies added to Model .properties|["snapshot_<snapshot>"] ["gas_frac_mass"]
and Model.properties["snapshot_<snapshot>"]["gas_frac"] arrays is given by
sample_size weighted by number_spirals_passed / _num_gals_all_files. If this value is
greater than number_spirals_passed, then all spiral galaxies will be used.

sage_analysis.example_calcs.calc_metallicity (model, gals, snapshot: int)
Calculates the metallicity as a function of stellar mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["metallicity_mass"]
and Model.properties["snapshot_<snapshot>"] ["metallicity"] arrays is given by
sample_size weighted by number_centrals_passed /_num_gals_all_files. If this value is

greater than number_centrals_passed, then all central galaxies will be used.

sage_analysis.example_calcs.calc_quiescent (model, gals, snapshot: int)
Calculates the quiescent galaxy fraction as a function of stellar mass. The galaxy population is also split into
central and satellites and the quiescent fraction of these are calculated.

The Model.properties["snapshot_<snapshot>"] ["centrals_MF"],
Model .properties["snapshot_<snapshot>"] ["satellites_MF"], Model.
properties|["snapshot_<snapshot>"] ["quiescent_galaxy_counts"], Model.
properties["snapshot_<snapshot>"] ["quiescent_centrals_counts"], and Model.
properties["snapshot_<snapshot>"] ["quiescent_satellites_counts"] arrays will be
updated.

42 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

Notes

We only count the number of quiescent galaxies in each stellar mass bin. When converting this to the qui-
escent fraction, one must divide by the number of galaxies in each stellar mass bin, the stellar mass function
Model .properties["snapshot_<snapshot>"]["SME"]. See plot_quiescent () for an ex-
ample implementation.

sage_analysis.example_calcs.calc_reservoirs (model, gals, snapshot: int)
Calculates the mass in each reservoir as a function of halo virial mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["reservoir_mvir"]
and Model .properties["snapshot_<snapshot>"] ["reservoir_<reservoir_name>"] ar-
raysis given by sample_size weighted by number_centrals_passed /_num_gals_all_files.

If this value is greater than number_centrals_passed, then all central galaxies will be used.

sage_analysis.example_calcs.calc_sSFR (model, gals, snapshot: int)
Calculates the specific star formation rate (star formation divided by the stellar mass of the galaxy) as a function
of stellar mass.

The number of galaxies added to Model .properties["snapshot_<snapshot>"] ["sSFR_mass"]
and Model.properties["snapshot_<snapshot>"]["sSFR_sSFR"] arrays is given by
sample_size weighted by number_gals_passed / _num_gals_all_files. If this value is
greater than number_gals_passed, then all galaxies with non-zero stellar mass will be used.

sage_analysis.example_calcs.calc_spatial (model, gals, snapshot: int)
Calculates the spatial position of the galaxies.

The number of galaxies added to Model.properties["snapshot_<snapshot>"]["<x/
y/z>_pos"] arrays is given by sample_ size weighted by number_galaxies_passed /
_num_gals_all_files. If this value is greater than number_galaxies_passed, then all galaxies
will be used.

2.12 sage_analysis.example_plots

Here we show a myriad of functions that can be used to plot properties calculated from the SAGE output.
We refer to ../user/plot for more information on how plotting is handled.

Authors: (Jacob Seiler, Manodeep Sinha)

sage_analysis.example_plots.plot_BMF (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) — mat-

plotlib.figure.Figure
Plots the baryonic mass function for the specified models. This is the mass function for the stellar mass + cold

gas.
Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (nested list of ints) — The snapshots to be plotted for each Mode I in models.

The length of the outer list MUST be equal to the length of models. For each model, the
baryonic mass function of all snapshots are plotted on the figure.

2.12. sage_analysis.example_plots 43

SAGE-analysis Documentation, Release 0.0.1

plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>2.BaryonicMassFunction.<output_format>"

sage_analysis.example_plots.plot_BTF (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) — mat-
plotlib.figure.Figure

sage_analysis.

Plots the baryonic Tully-Fisher relationship for the specified models.

Parameters

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — The snapshots to be plotted for each Model in models.

The length of the outer list MUST be equal to the length of models. For each model, the
baryonic Tully-Fisher relationship of all snapshots are plotted on the figure.

plot_helper (P1lotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>4.BaryonicTullyFisher.<output_format>"

example_plots.plot_GMF (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) — mat-
plotlib.figure.Figure

Plots the gas mass function for the specified models. This is the mass function for the cold gas.

Parameters

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — The snapshots to be plotted for each Mode 1 in models.

The length of the outer list MUST be equal to the length of models. For each model, the
gas mass function of all snapshots are plotted on the figure.

plot_helper (P1lotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>3.GasMassFunction.<output_format>"

44

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.

example_plots.plot_SFRD_history (models: List[sage_analysis.model. Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper)
— matplotlib.figure.Figure

Plots the evolution of star formation rate density for the specified models.

Parameters

sage_analysis.

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — This is a dummy variable that is present to ensure the
signature is identical to the other plot functions.

plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>B.SFRDensity.<output_format>"

example_plots.plot_SMD_history (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) —
matplotlib.figure.Figure

Plots the evolution of stellar mass density for the specified models.

Parameters

sage_analysis.

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — This is a dummy variable that is present to ensure the
signature is identical to the other plot functions.

plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>C.StellarMassDensity.<output_format>"

example_plots.plot_SMF (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper,
plot_sub_populations: ~ bool = False) — mat-
plotlib.figure.Figure

Plots the stellar mass function for the specified models.

Parameters

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

2.12. sage_analy

sis.example_plots

45

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.

snapshots (nested list of ints) — The snapshots to be plotted for each Model in models.

The length of the outer list MUST be equal to the length of models. For each model, the
stellar mass function of all snapshots are plotted on the figure.

plot_helper (P1lotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

plot_sub_populations (Boolean, default False) — If True, plots the stellar mass function
for red and blue sub-populations.

Generates

The plot will be saved as “<output_path>1.StellarMassFunction.<output_format>"

example_plots.plot_SMF_history (models: List[sage_analysis.model. Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) —
matplotlib.figure.Figure

Plots the evolution of the stellar mass function for the specified models. This function loops over the value of
model .SMF_snaps and plots and the SMFs at each snapshots.

Parameters

sage_analysis.

Plots the total

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — This is a dummy variable that is present to ensure the
signature is identical to the other plot functions.

plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>A.StellarMassFunction.<output_format>"

example_plots.plot_baryon_fraction (models:
List[sage_analysis.model.Model],
snapshots: List[List[int]],
plot_helper:
sage_analysis.plot_helper.PlotHelper,
plot_sub_populations: bool = False)

— matplotlib.figure.Figure
baryon fraction as afunction of halo mass for the specified models.

Parameters

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — The snapshots to be plotted for each Mode I in models.

The length of the outer list MUST be equal to the length of models. For each model, the
baryon fraction of all snapshots are plotted on the figure.

46

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

* plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

* plot_sub_populations (Boolean, default False) — If True, plots the baryon fraction for
each reservoir. Otherwise, only plots the total baryon fraction.

¢ Generates

¢ The plot will be saved as “<output_path>11.BaryonFraction.<output_format>"

sage_analysis.example_plots.plot_bh_bulge (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) —

matplotlib.figure.Figure
Plots the black-hole bulge relationship for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (nested list of ints) — The snapshots to be plotted for each Mode I in models.

The length of the outer list MUST be equal to the length of models. For each model, the
black hole bulge relationship of all snapshots are plotted on the figure.

* plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

¢ Generates

* The plot will be saved as “<output_path>8.BlackHoleBulgeRelationship.<output_format>"

sage_analysis.example_plots.plot_bulge_fraction (models:
List[sage_analysis.model. Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper. PlotHelper,
plot_disk_fraction: ~ bool = False,

plot_var: bool = False) — mat-
plotlib.figure.Figure
Plots the fraction of the stellar mass that is located in the bulge/disk as a function of stellar mass for the specified
models.
Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (nested list of ints) — The snapshots to be plotted for each Model in models.

The length of the outer list MUST be equal to the length of models. For each model, the
bulge fraction of all snapshots are plotted on the figure.

* plot_helper (P1lotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

2.12. sage_analysis.example_plots 47

SAGE-analysis Documentation, Release 0.0.1

plot_disk_fraction (bool, optional) — If specified, will also plot the disk fraction.
plot_var (Boolean, default False) — If True, plots the variance as shaded regions.

Generates

The plot will be saved as :py:attr:‘~sage_analysis.plot_helper.PlotHelper.output_path‘10.BulgeMassFraction.
:py:attr:‘~sage_analysis.plot_helper.PlotHelper.output_format°‘.

sage_analysis.example_plots.plot_gas_fraction (models: List[sage_analysis.model.Model],

sage_analysis.

snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper)
— matplotlib.figure.Figure

Plots the fraction of baryons that are in the cold gas reservoir as a function of stellar mass for the specified

models.

Parameters

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — The snapshots to be plotted for each Mode I in models.

The length of the outer list MUST be equal to the length of models. For each model, the
gas fraction of all snapshots are plotted on the figure.

plot_helper (P1lotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>6.GasFraction.<output_format>"

example_plots.plot_metallicity (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) —
matplotlib.figure.Figure

Plots the metallicity as a function of stellar mass for the speicifed models.

Parameters

models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

snapshots (nested list of ints) — The snapshots to be plotted for each Mode I in models.

The length of the outer list MUST be equal to the length of models. For each model, the
metallicity of all snapshots are plotted on the figure.

plot_helper (P1lotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

Generates

The plot will be saved as “<output_path>7.Metallicity.<output_format>"

48

Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.example_plots.plot_quiescent (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper. PlotHelper,
plot_sub_populations: bool = False) —

matplotlib.figure.Figure
Plots the fraction of galaxies that are quiescent as a function of stellar mass for the specified models. The

quiescent cut is defined by sSFRcut.
Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (nested list of ints) — The snapshots to be plotted for each Model in models.

The length of the outer list MUST be equal to the length of models. For each model, the
quiescent fraction of all snapshots are plotted on the figure.

* plot_helper (PlotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

* plot_sub_populations (Boolean, default False) — If True, plots the centrals and satellite
sub-populations.

* Generates

* The plot will be saved as “<output_path>9.QuiescentFraction.<output_format>"

sage_analysis.example_plots.plot_reservoirs (models: List[sage_analysis.model. Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) — —

List[matplotlib.figure.Figure]
Plots the mass in each reservoir as a function of halo mass for the specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (nested list of ints) — The snapshots to be plotted for each Model in models.

The length of the outer list MUST be equal to the length of models. For each model, each
snapshot will be plotted and saved as a separate figure.

* plot_helper (P1lotHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

* Generates

* A plot will be saved as ‘“”’<output_path>12.MassReservoirs<model.label>.<output_format>"¢¢
for each mode.

sage_analysis.example_plots.plot_sSFR (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) — mat-
plotlib.figure.Figure

2.12. sage_analysis.example_plots 49

SAGE-analysis Documentation, Release 0.0.1

Plots the specific star formation rate as a function of stellar mass for the specified models.
Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

 snapshots (nested list of ints) — The snapshots to be plotted for each Mode I in models.

The length of the outer list MUST be equal to the length of models. For each model, the
specific star formation rate of all snapshots are plotted on the figure.

* plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

* Generates

* The plot will be saved as “<output_path>5.SpecificStarFormationRate.<output_format>"

sage_analysis.example_plots.plot_spatial (models: List[sage_analysis.model.Model],
snapshots: List[List[int]], plot_helper:
sage_analysis.plot_helper.PlotHelper) —

matplotlib.figure.Figure
Plots the spatial distribution of the galaxies for specified models.

Parameters

* models (List of Model class instance) — Models that will be plotted. These in-
stances contain the properties necessary to create the plot, accessed via Model.
properties["snapshot_<snapshot>"] ["property_name"].

* snapshots (nested list of ints) — The snapshots to be plotted for each Model in models.

The length of the outer list MUST be equal to the length of models. For each model, the
spatial position of all snapshots are plotted on the figure.

* plot_helper (P1otHelper) — A helper class that contains attributes and methods to assist
with plotting. In particular, the path where the plots will be saved and the output format.
Refer to ../user/plot_helper for more information on how to initialize this class and its use.

* Generates

* A plot will be saved as ‘“”’<output_path>13.SpatialDistribution<model.label>.<output_format>"¢¢
for each

e model.

sage_analysis.example_plots.plot_spatial_3d(pos, output_file, box_size) — mat-

plotlib.figure.Figure
Plots the 3D spatial distribution of galaxies.

Parameters

* pos (numpy 3D array with length equal to the number of galaxies) — The position (in Mpc/h)
of the galaxies.

* output_file (String) — Name of the file the plot will be saved as.

Returns

50 Chapter 2. Maintainers

SAGE-analysis Documentation, Release 0.0.1

Return type None. A plot will be saved as output_file.

2.13 sage_analysis.utils

sage_analysis.utils.find_closest_indices (values: List[float], target_values: List[float]) —
List[int]
Finds the indices in values that result in values closest to target_values.

sage_analysis.utils.generate_func_dict (plot_toggles, module_name, function_prefix, key-
word_args={}) — Dict[str, Tuple[Callable, Dict[str,

Anyl]]
Generates a dictionary where the keys are the function name and the value is a list containing the function itself

(Oth element) and keyword arguments as a dictionary (1st element). All functions in the returned dictionary
are expected to have the same call signature for non-keyword arguments. Functions are only added when the
plot_toggles value is non-zero.

Functions are required to be named <module_name><function_prefix><plot_toggle_key>
For example, the default calculation function are kept in the model.py module and are named
calc_<toggle>. E.g., sage_analysis.model.calc_SMF (), sage_analysis.model.
calc_BTF (), sage_analysis.model.calc_sSFR() etc.

Parameters

* plot_toggles (dict, [string, int]) — Dictionary specifying the name of each property/plot and
whether the values will be generated + plotted. A value of 1 denotes plotting, whilst a value
of 0 denotes not plotting. Entries with a value of 1 will be added to the function dictionary.

* module_name (string) — Name of the module where the functions are located. If the func-
tions are located in this module, pass an empty string “”.

* function_prefix (string) — Prefix that is added to the start of each function.

» keyword_args (dict [string, dict[string, variable]], optional) — Allows the adding of key-
word aguments to the functions associated with the specified plot toggle. The name of each
keyword argument and associated value is specified in the inner dictionary.

Returns func_dict — The key of this dictionary is the name of the function. The value is a list with
the Oth element being the function and the 1st element being a dictionary of additional keyword
arguments to be passed to the function. The inner dictionary is keyed by the keyword argument
names with the value specifying the keyword argument value.

Return type dict [string, tuple(function, dict[string, variable])]

sage_analysis.utils.read_generic_sage_params (sage_file_path: str) — Dict[str, Any]
Reads the SAGE parameter file values. This function is used for the default sage_binary and sage_hdf5
formats. If you have a custom format, you will need to write a read_sage_params function in your own
data class.

Parameters sage_file_path (string) — Path to the SAGE parameter file.
Returns
* model_dict (dict [str; var]) — Dictionary containing the parameter names and their values.

e Errors

* FileNotFoundError — Raised if the specified SAGE parameter file is not found.

2.13. sage_analysis.utils 51

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

SAGE-analysis Documentation, Release 0.0.1

sage_analysis.utils.select_random_indices (inds: numpy.ndarray,
global_num_inds_available: int,
global_num_inds_requested: int, seed: Op-
tional[int] = None) — numpy.ndarray
Select a random subset of indices if the total number of indices (across all files) is known. This function is used

if selecting (e.g.,) 100 galaxies from a sample of 10,000.

However, if the total number of indices is NOT known, then this function is not valid. For example, if one
wanted to select 100 spiral galaxies, we may not know how many spiral galaxies are present across all files. In
such scenarios, select_random_indices_assumed_equal_distribution () should be used.

Parameters
e vals (ndarray of values) — Values that the random subset is selected from.
 global_num_inds_available (inf) — The total number of indices available across all files.
* global_num_inds_requested (int) — The total number of indices requested across all files.

* seed (int, optional) — If specified, seeds the random number generator with the specified
seed.

Returns random_inds — Values chosen.

Return type ndarray of values

52 Chapter 2. Maintainers

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Python Module Index

S

sage_analysis.
sage_analysis.
sage_analysis.
sage_analysis.
sage_analysis.
sage_analysis.

example_calcs, 40
example_plots, 43
model, 32
sage_binary, 39
sage_hdf5, 37
utils, 51

53

SAGE-analysis Documentation, Release 0.0.1

54 Python Module Index

Index

Symbols

__init__ () (sage_analysis.GalaxyAnalysis method),
25

__init__ () (sage_analysis.model. Model method), 32

__init__ () (sage_analysis.sage_binary.SageBinaryDa
method), 39

__init__ () (sage_analysis.sage_hdf5.SageHdf5Data
method), 37

A

analyze_galaxies ()
(sage_analysis.GalaxyAnalysis
29

method),

B

base_sage_data_path
(sage_analysis.model.Model attribute), 34

bins (sage_analysis.model.Model attribute), 34

box_size (sage_analysis.model. Model attribute), 35

C

calc_baryon_fraction () (in module
sage_analysis.example_calcs), 41
calc_bh_bulge () (in module

sage_analysis.example_calcs), 42
calc_BMF () (in module sage_analysis.example_calcs),

40

calc_BTF () (in module sage_analysis.example_calcs),
40

calc_bulge_fraction() (in module
sage_analysis.example_calcs), 42

calc_gas_fraction () (in module

sage_analysis.example_calcs), 42

calc_GMF () (in module sage_analysis.example_calcs),
40

calc_metallicity () (in
sage_analysis.example_calcs), 42

calc_properties () (sage_analysis.model. Model
method), 33

module

calc_properties_all_files()
(sage_analysis.model. Model method), 33

calc_quiescent () (in module
sage_analysis.example_calcs), 42
([calc_reservoirs () (in module
sage_analysis.example_calcs), 43
calc_SFRD_history () (in module
sage_analysis.example_calcs), 41
calc_SMD_history () (in module

sage_analysis.example_calcs), 41
calc_SMF () (in module sage_analysis.example_calcs),
41

calc_SMF_history () (in module
sage_analysis.example_calcs), 41

calc_spatial () (in module
sage_analysis.example_calcs), 43

calc_sSFR() (in module

sage_analysis.example_calcs), 43
calculation_functions
(sage_analysis.model. Model attribute), 35
close_file () (sage_analysis.sage_binary.SageBinaryData
method), 39
close_file () (sage_analysis.sage_hdf5.SageHdf5Data
method), 37

D

determine_num_gals ()
(sage_analysis.sage_binary.SageBinaryData
method), 39

determine_num_gals ()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 37

determine_volume_analyzed()
(sage_analysis.sage_binary.SageBinaryData
method), 39

determine_volume_analyzed()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 38

55

SAGE-analysis Documentation, Release 0.0.1

F

find_closest_indices|()
sage_analysis.utils), 51

first_file _to_analyze
(sage_analysis.model. Model attribute), 35

(in module

G

GalaxyAnalysis (class in sage_analysis), 25

generate_func_dict () (in
sage_analysis.utils), 51

generate_plots () (sage_analysis.GalaxyAnalysis
method), 30

module

Fi

history_redshifts (sage_analysis.GalaxyAnalysis
attribute), 31
hubble_h (sage_analysis.model. Model attribute), 35

IMF (sage_analysis.model.Model attribute), 34
init_binned_properties ()
(sage_analysis.model. Model method), 33
init_scatter_properties|()
(sage_analysis.model. Model method), 34
init_single_properties|()
(sage_analysis.model. Model method), 34

L

label (sage_analysis.model.Model attribute), 35
last_file_to_analyze
(sage_analysis.model. Model attribute), 35

M

Model (class in sage_analysis.model), 32
models (sage_analysis.GalaxyAnalysis attribute), 31

N

num_gals_all_files (sage_analysis.model. Model
attribute), 35

num_models (sage_analysis.GalaxyAnalysis attribute),
31

num_sage_output_files
(sage_analysis.model. Model attribute), 35

O

output_format_data_classes_dict

plot_baryon_fraction () (in module
sage_analysis.example_plots), 46
plot_bh_bulge () (in module

sage_analysis.example_plots), 47

plot_BMF () (in module sage_analysis.example_plots),
43

plot_BTF () (in module sage_analysis.example_plots),
44

plot_bulge_fraction () (in
sage_analysis.example_plots), 47

plot_functions (sage_analysis.GalaxyAnalysis at-
tribute), 31

plot_gas_fraction () (in
sage_analysis.example_plots), 48

plot_GMF () (in module sage_analysis.example_plots),
44

module

module

plot_metallicity () (in module
sage_analysis.example_plots), 48
plot_quiescent () (in module
sage_analysis.example_plots), 48
plot_reservoirs|() (in module
sage_analysis.example_plots), 49
plot_SFRD_history () (in module
sage_analysis.example_plots), 44
plot_SMD_history () (in module

sage_analysis.example_plots), 45
plot_SMF () (in module sage_analysis.example_plots),
45

plot_SMF_history () (in module
sage_analysis.example_plots), 46

plot_spatial () (in module
sage_analysis.example_plots), 50

plot_spatial_3d() (in module

sage_analysis.example_plots), 50
plot_sSFR() (in module
sage_analysis.example_plots), 49

plot_toggles (sage_analysis.GalaxyAnalysis at-
tribute), 32
plot_toggles (sage_analysis.model. Model at-

tribute), 36
plots_that_need_smf
(sage_analysis.model.Model attribute), 36

properties (sage_analysis.model. Model attribute),
36

R

random_seed (sage_analysis.model. Model attribute),

(sage_analysis.GalaxyAnalysis attribute), 2%
31 : : :
output_path (sage_analysis.model. Model attribute), read_gals () (sage_analysis.sage_binary.SageBinaryData
_35 - method), 39
read_gals () (sage_analysis.sage_hdf5.SageHdf5Data
P method), 38
parameter_dirpath (sage_analysis.model.Model Tedd—_generic_sage params() (in module
attribute), 36 sage_analysis.utils), 51
56 Index

SAGE-analysis Documentation, Release 0.0.1

read_sage_params ()
(sage_analysis.sage_binary.SageBinaryData
method), 40

read_sage_params ()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 38

redshifts (sage_analysis.model.Model attribute), 36

S

sage_analysis.example_calcs (module), 40

sage_analysis.example_plots (module), 43

sage_analysis.model (module), 32

sage_analysis.sage_binary (module), 39

sage_analysis.sage_hdf5 (module), 37

sage_analysis.utils (module), 51

sage_data_path (sage_analysis.model.Model
attribute), 36

sage_file (sage_analysis.model. Model attribute), 36

sage_output_format (sage_analysis.model.Model
attribute), 36

SageBinaryData (class in
sage_analysis.sage_binary), 39

SageHdf5Data (class in sage_analysis.sage_hdf5), 37

sample_size (sage_analysis.model. Model attribute),
37

select_random_galaxy_indices ()
(sage_analysis.model.Model method), 34

select_random_indices () (in module
sage_analysis.utils), 51

snapshot (sage_analysis.model.Model attribute), 37

sSFRcut (sage_analysis.model.Model attribute), 36

U

update_snapshot_and_data_path ()
(sage_analysis.sage_binary.SageBinaryData
method), 40

update_snapshot_and_data_path ()
(sage_analysis.sage_hdf5.SageHdf5Data
method), 38

Vv

volume (sage_analysis.model.Model attribute), 37

Index

57

	Installation
	Maintainers
	Introduction
	Setting up SAGE
	Analyzing SAGE Output
	Defining Custom Properties
	Analyzing Custom Properties
	Analyzing Custom Data
	sage_analysis.GalaxyAnalysis
	sage_analysis.Model
	sage_analysis.sage_hdf5
	sage_analysis.sage_binary
	sage_analysis.example_calcs
	sage_analysis.example_plots
	sage_analysis.utils

	Python Module Index
	Index

